Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a soluble CD28-Fab complex

Abstract

Naive T cell activation requires signaling by the T cell receptor and by nonclonotypic cell surface receptors. The most important costimulatory protein is the monovalent homodimer CD28, which interacts with CD80 and CD86 expressed on antigen-presenting cells. Here we present the crystal structure of a soluble form of CD28 in complex with the Fab fragment of a mitogenic antibody. Structural comparisons redefine the evolutionary relationships of CD28-related proteins, antigen receptors and adhesion molecules and account for the distinct ligand-binding and stoichiometric properties of CD28 and the related, inhibitory homodimer CTLA-4. Cryo-electron microscopy–based comparisons of complexes of CD28 with mitogenic and nonmitogenic antibodies place new constraints on models of antibody-induced receptor triggering. This work completes the initial structural characterization of the CD28–CTLA-4–CD80–CD86 signaling system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the sCD28 monomer.
Figure 2: Structure-based alignment of the CD28 and CTLA-4 extracellular domain sequences.
Figure 3: Properties of the ligand-binding faces of CD28 and CTLA-4.
Figure 4: Structure of the crystallographic sCD28 homodimer.
Figure 5: Proposed ligand- and 5.11A1 Fab complexes formed by putative CD28 homodimers.
Figure 6: Structures of CD28Fc complexes formed with mitogenic and nonmitogenic antibodies determined by cryo-EM.
Figure 7: Mutational analysis of the native CD28 homodimer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lafferty, K.J., Misko, I.S. & Cooley, M.A. Allogeneic stimulation modulates the in vitro response of T cells to transplantation antigen. Nature 249, 275–276 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Riley, J.L. et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc. Natl. Acad. Sci. USA 99, 11790–11795 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Diehn, M. et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc. Natl. Acad. Sci. USA 99, 11796–11801 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3, 939–951 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Wulfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Boonen, G.J. et al. CD28 induces cell cycle progression by IL-2-independent down-regulation of p27kip1 expression in human peripheral T lymphocytes. Eur. J. Immunol. 29, 789–798 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Kovalev, G.I., Franklin, D.S., Coffield, V.M., Xiong, Y. & Su, L. An important role of CDK inhibitor p18(INK4c) in modulating antigen receptor-mediated T cell proliferation. J. Immunol. 167, 3285–3292 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Lindstein, T., June, C.H., Ledbetter, J.A., Stella, G. & Thompson, C.B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244, 339–343 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Boise, L.H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3, 87–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Green, J.M. et al. Absence of B7-dependent responses in CD28-deficient mice. Immunity 1, 501–508 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Lucas, P.J., Negishi, I., Nakayama, K., Fields, L.E. & Loh, D.Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768 (1995).

    CAS  PubMed  Google Scholar 

  14. Ferguson, S.E., Han, S., Kelsoe, G. & Thompson, C.B. CD28 is required for germinal center formation. J. Immunol. 156, 4576–4581 (1996).

    CAS  PubMed  Google Scholar 

  15. King, C.L., Xianli, J., June, C.H., Abe, R. & Lee, K.P. CD28-deficient mice generate an impaired Th2 response to Schistosoma mansoni infection. Eur. J. Immunol. 26, 2448–2455 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Krummel, M.F. & Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Carreno, B.M. & Collins, M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu. Rev. Immunol. 20, 29–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshinaga, S.K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Brodie, D. et al. LICOS, a primordial costimulatory ligand? Curr. Biol. 10, 333–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Bromley, S.K. et al. The immunological synapse and CD28–CD80 interactions. Nat. Immunol. 2, 1159–1166 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Davis, S.J. et al. The nature of molecular recognition by T cells. Nat. Immunol. 4, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ikemizu, S. et al. Structure and dimerization of a soluble form of B7–1. Immunity 12, 51–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Schwartz, J.C., Zhang, X., Fedorov, A.A., Nathenson, S.G. & Almo, S.C. Structural basis for co-stimulation by the human CTLA-4/B7–2 complex. Nature 410, 604–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Stamper, C.C. et al. Crystal structure of the B7–1/CTLA-4 complex that inhibits human immune responses. Nature 410, 608–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Collins, A.V. et al. The interaction properties of costimulatory molecules revisited. Immunity 17, 201–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Luhder, F. et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J. Exp. Med. 197, 955–966 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Metzler, W.J. et al. Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat. Struct. Biol. 4, 527–531 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, X. et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20, 337–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Peach, R.J. et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7–1. J. Exp. Med. 180, 2049–2058 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Sorensen, P. et al. Identification of protein-protein interfaces implicated in CD80–CD28 costimulatory signaling. J. Immunol. 172, 6803–6809 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Davies, D.R. & Cohen, G.H. Interactions of protein antigens with antibodies. Proc. Natl. Acad. Sci. USA 93, 7–12 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bahadur, R.P., Chakrabarti, P., Rodier, F. & Janin, J. A dissection of specific and non-specific protein-protein interfaces. J. Mol. Biol. 336, 943–955 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Navaza, J., Lepault, J., Rey, F.A., Alvarez-Rua, C. & Borge, J. On the fitting of model electron densities into EM reconstructions: a reciprocal-space formulation. Acta Crystallogr. D Biol. Crystallogr. 58, 1820–1825 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. O'Regan, M.N., Parsons, K.R., Tregaskes, C.A. & Young, J.R. A chicken homologue of the co-stimulating molecule CD80 which binds to mammalian CTLA-4. Immunogenetics 49, 68–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Margulies, D.H. CD28, costimulator or agonist receptor? J. Exp. Med. 197, 949–953 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ostrov, D.A., Shi, W., Schwartz, J.C., Almo, S.C. & Nathenson, S.G. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science 290, 816–819 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Davis, S.J. et al. Antibody and HIV-1 gp120 recognition of CD4 undermines the concept of mimicry between antibodies and receptors. Nature 358, 76–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Davis, S.J. & van der Merwe, P.A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17, 177–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. van der Merwe, P.A., Davis, S.J., Shaw, A.S. & Dustin, M.L. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin. Immunol. 12, 5–21 (2000).

    Article  CAS  Google Scholar 

  42. Butters, T.D. et al. Effects of N-butyldeoxynojirimycin and the Lec3.2.8.1 mutant phenotype on N-glycan processing in Chinese hamster ovary cells: application to glycoprotein crystallization. Protein Sci. 8, 1696–1701 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walter, T.S. et al. A procedure for setting up high-throughput, nanolitre crystallization experiments. I protocol, design and validation. J. Appl. Crystallogr. 36, 308–314 (2003).

    Article  CAS  Google Scholar 

  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Brunger, A.T. X-PLOR Version 3.1. A system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut, 1992).

    Google Scholar 

  46. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  48. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Grigorieff, N. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J. Mol. Biol. 277, 1033–1046 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Stuart, D.I., Levine, M., Muirhead, H. & Stammers, D.K. Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 A. J. Mol. Biol. 134, 109–142 (1979).

    Article  CAS  PubMed  Google Scholar 

  52. Grimes, J.M. et al. The atomic structure of the bluetongue virus core. Nature 395, 470–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Gilbert, R.J. et al. Three-dimensional structures of translating ribosomes by Cryo-EM. Mol. Cell 14, 57–66 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Ikemizu, E.Y. Jones, P.A. van der Merwe, K.M. Dennehy, S.H. Abidi and L. Hene for comments on the manuscript; and E. Mancini, J. Grimes and the staff of ID13 at ESRF for assistance with data collection. Supported by the Wellcome Trust, the Royal Society and the UK Medical Research Council through funding of the Oxford Protein Production Facility, and by Active Biotech Research AB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David I Stuart or Simon J Davis.

Ethics declarations

Competing interests

T. Hanke and T. Hünig have a financial interest in TeGenero AG and antibody 5.11A1.

Supplementary information

Supplementary Fig. 1

Equilibrium analysis of monomeric sCD28 binding to sB7-1. (PDF 114 kb)

Supplementary Fig. 2

Final electron density maps for the CD28/511A1 Fab structure. (PDF 117 kb)

Supplementary Fig. 3

sB7-2d1 versus full-length sB7-2 binding to the CD28 homodimer. (PDF 128 kb)

Supplementary Fig. 4

Blocking the ligand binding site of CD28 with the 7.3B6 antibody. (PDF 119 kb)

Supplementary Table 1

Properties of major lattice contacts seen in crystals of costimulatory proteins. (PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, E., Esnouf, R., Manso-Sancho, R. et al. Crystal structure of a soluble CD28-Fab complex. Nat Immunol 6, 271–279 (2005). https://doi.org/10.1038/ni1170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing