Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-strand recombination signal sequence nicks in vivo: evidence for a capture model of synapsis

Abstract

Variable (diversity) joining (V(D)J) recombination is initiated by the introduction of single-strand DNA breaks (nicks) at recombination signal sequences (RSSs). The importance and fate of these RSS nicks for the regulation of the V(D)J rearrangement and their potential contribution to genomic instability are poorly understood. Using two new methodologies, we were able to detect and quantify specific RSS nicks introduced into genomic DNA by incubation with recombination-activating gene proteins in vitro. In vivo, however, we found that nicks mediated by recombination-activating gene (RAG) proteins were detectable only in gene segments associated with RSSs containing 12–base pair spacers but not in those containing 23–base pair spacers. These data support a model of capture rather than synapsis for pairwise RSS cleavage during V(D)J recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligo-capture assay for RSS nicks.
Figure 2: Limit of detection and specificity of the oligo-capture assay.
Figure 3: DNA nicks at Vκ RSS-12 but not Jκ RSS-23 sequences in pro–B cell lines induced to rearrange the Igk locus.
Figure 4: DNA nicks and breaks in the Igh locus.
Figure 5: DNA nicks at Jα50 RSS-12 but not Vα13 RSS-23 or Vκ RSS-12 sequences in thymocyte genomic DNA.
Figure 6: Alternative assays for RAG1 and RAG2 activity on RSS-12 and RSS-23 DNA.

Similar content being viewed by others

References

  1. Tonegawa, S., Brack, C., Hozumi, N. & Pirrotta, V. Organization of immunoglobulin genes. Cold Spring Harb. Symp. Quant. Biol. 42, 921–931 (1978).

    Article  CAS  Google Scholar 

  2. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  Google Scholar 

  3. Schatz, D., Oettinger, M. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  4. Oettinger, M., Schatz, D., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  Google Scholar 

  5. Gellert, M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71, 101–132 (2002).

    Article  CAS  Google Scholar 

  6. McBlane, J. et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83, 387–395 (1995).

    Article  CAS  Google Scholar 

  7. Roth, D., Menetski, J., Nakajima, P., Bosma, M. & Gellert, M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70, 983–991 (1992).

    Article  CAS  Google Scholar 

  8. Roth, D., Nakajima, P., Menetski, J., Bosma, M. & Gellert, M.V. (D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor δ rearrangement signals. Cell 69, 41–53 (1992).

    Article  CAS  Google Scholar 

  9. Schlissel, M., Constantinescu, A., Morrow, T., Baxter, M. & Peng, A. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 7, 2520–2532 (1993).

    Article  CAS  Google Scholar 

  10. Roth, D., Zhu, C. & Gellert, M. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. USA 90, 10788–10792 (1993).

    Article  CAS  Google Scholar 

  11. Lewis, S., Gifford, A. & Baltimore, D. DNA elements are asymmetrically joined during the site-specific recombination of κ immunoglobulin genes. Science 228, 677–685 (1985).

    Article  CAS  Google Scholar 

  12. van Gent, D. et al. Initiation of V(D)J recombinations in a cell-free system by RAG1 and RAG2 proteins. Curr. Top. Microbiol. Immunol. 217, 1–10 (1996).

    CAS  PubMed  Google Scholar 

  13. Lewis, S. & Gellert, M. The mechanism of antigen receptor gene assembly. Cell 59, 585–588 (1989).

    Article  CAS  Google Scholar 

  14. Schlissel, M. Structure of nonhairpin coding-end DNA breaks in cells undergoing V(D)J recombination. Mol. Cell. Biol. 18, 2029–2037 (1998).

    Article  CAS  Google Scholar 

  15. Neiditch, M.B., Lee, G.S., Huye, L.E., Brandt, V.L. & Roth, D.B. The V(D)J recombinase efficiently cleaves and transposes signal joints. Mol. Cell 9, 871–878 (2002).

    Article  CAS  Google Scholar 

  16. Lee, G., Neiditch, M., Salus, S. & Roth, D. RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 117, 171–184 (2004).

    Article  CAS  Google Scholar 

  17. Kwon, J., Imbalzano, A.N., Matthews, A. & Oettinger, M.A. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol. Cell 2, 829–839 (1998).

    Article  CAS  Google Scholar 

  18. Jones, J. & Gellert, M. Ordered assembly of the V(D)J synaptic complex ensures accurate recombination. EMBO J. 21, 4162–4171 (2002).

    Article  CAS  Google Scholar 

  19. Rigby, P.W., Dieckmann, M., Rhodes, C. & Berg, P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  20. Chen, Y., Wang, L., Huang, M. & Rosenberg, N. An active v-abl protein tyrosine kinase blocks immunoglobulin light-chain gene rearrangement. Genes Dev. 8, 688–697 (1994).

    Article  CAS  Google Scholar 

  21. Greenbaum, S., Lazorchak, A. & Zhuang, Y. Differential functions for the transcription factor E2A in positive and negative gene regulation in pre-B lymphocytes. J. Biol. Chem. 279, 45028–45035 (2004).

    Article  CAS  Google Scholar 

  22. Muljo, S. & Schlissel, M. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus–transformed pre-B cell lines. Nat. Immunol. 4, 31–37 (2003).

    Article  CAS  Google Scholar 

  23. Liang, H., Hsu, L., Cado, D. & Schlissel, M. Variegated transcriptional activation of the immunoglobulin kappa locus in pre-B cells contributes to the allelic exclusion of light-chain expression. Cell 118, 19–29 (2004).

    Article  CAS  Google Scholar 

  24. Constantinescu, A. & Schlissel, M. Changes in locus-specific V(D)J recombinase activity induced by immunoglobulin gene products during B cell development. J. Exp. Med. 185, 609–620 (1997).

    Article  CAS  Google Scholar 

  25. Schlissel, M.S. & Baltimore, D. Activation of immunoglobulin κ gene rearrangement correlates with induction of germline κ gene transcription. Cell 58, 1001–1007 (1989).

    Article  CAS  Google Scholar 

  26. Zhong, X. & Krangel, M. Enhancer-blocking activity within the DNase I hypersensitive site 2 to 6 region between the TCR α and Dad1 genes. J. Immunol. 163, 295–300 (1999).

    CAS  PubMed  Google Scholar 

  27. Kosak, S. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    Article  CAS  Google Scholar 

  28. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    Article  CAS  Google Scholar 

  29. Sayegh, C., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 19, 322–327 (2005).

    Article  CAS  Google Scholar 

  30. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  31. Fernandez, L., Winkler, M. & Grosschedl, R. Matrix attachment region-dependent function of the immunoglobulin mu enhancer involves histone acetylation at a distance without changes in enhancer occupancy. Mol. Cell. Biol. 21, 196–208 (2001).

    Article  CAS  Google Scholar 

  32. Curry, J.D., Li, L. & Schlissel, M.S. Quantification of Jκ signal end breaks in developing B cells by blunt-end linker ligation and qPCR. J. Immunol. Methods 296, 19–30 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Robey for Rag1−/− TCRαβ-transgenic mice; Y. Zhuang (Duke University, Durham, North Carolina) for the E2A cell line; and A. Winoto and members of the Schlissel lab for comments. Supported by National Institutes of Health (AI40227 and HL48702 to M.S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S Schlissel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Oligo-capture assays of RSS nicks at various rearranging gene-segments. (PDF 91 kb)

Supplementary Fig. 2

Nuclease activity in apoptotic cells does not affect the oligo-capture assay for RSS nicks. (PDF 123 kb)

Supplementary Table 1

5′ phosphorylated and 3′ biotinylated oligo sequences for the oligo-capture assay. (PDF 36 kb)

Supplementary Table 2

Oligonucleotide primers used for LM-PCR. (PDF 18 kb)

Supplementary Table 3

List of nucleotide primers and probes used for sequence detection. (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curry, J., Geier, J. & Schlissel, M. Single-strand recombination signal sequence nicks in vivo: evidence for a capture model of synapsis. Nat Immunol 6, 1272–1279 (2005). https://doi.org/10.1038/ni1270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing