Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells

Abstract

The BCL6 proto-oncogene encodes a transcriptional repressor that is required for germinal center formation and has been linked to lymphomagenesis. BCL6 functions by directly binding to specific DNA sequences and suppressing the transcription of target genes. Here we report an alternative mechanism by which BCL6 controls the transcription of genes lacking a BCL6 binding site and show that this mechanism was required for the prevention of tumor suppressor p53–independent cell cycle arrest in germinal center B cells. BCL6 interacted with the transcriptional activator Miz-1 and, via Miz-1, bound to the promoter and suppressed transcription of the cell cycle arrest gene CDKN1A. Through this mechanism, BCL6 may facilitate the proliferative expansion of germinal centers during the normal immune response and, when deregulated, the pathological expansion of B cell lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of candidates BCL6 target genes.
Figure 2: BCL6 interacts with Miz-1.
Figure 3: BCL6 is recruited to the CDKN1A promoter by Miz-1.
Figure 4: BCL6 actively suppresses Miz-1-dependent activation of the CDKN1A gene.
Figure 5: Suppression of BCL6 by siRNA induces CDKN1A mRNA and protein expression and cell cycle retardation in B cells.
Figure 6: Constitutive expression of BCL6 in B cells suppresses DNA damage–induced CDKN1A expression and protects B cells from DNA damage–induced cell cycle arrest.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Gene Expression Omnibus

References

  1. Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    Article  CAS  Google Scholar 

  2. Chang, C.C., Ye, B.H., Chaganti, R.S. & Dalla-Favera, R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl. Acad. Sci. USA 93, 6947–6952 (1996).

    Article  CAS  Google Scholar 

  3. Seyfert, V.L., Allman, D., He, Y. & Staudt, L.M. Transcriptional repression by the proto-oncogene BCL-6. Oncogene 12, 2331–2342 (1996).

    CAS  Google Scholar 

  4. Dhordain, P. et al. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc. Natl. Acad. Sci. USA 94, 10762–10767 (1997).

    Article  CAS  Google Scholar 

  5. Wong, C.W. & Privalsky, M.L. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARα, and BCL-6. J. Biol. Chem. 273, 27695–27702 (1998).

    Article  CAS  Google Scholar 

  6. Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119, 75–86 (2004).

    Article  CAS  Google Scholar 

  7. Pasqualucci, L. et al. Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk. Lymphoma 44, S5–12 (2003).

    Article  CAS  Google Scholar 

  8. Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood 86, 45–53 (1995).

    CAS  PubMed  Google Scholar 

  9. Allman, D. et al. BCL-6 expression during B-cell activation. Blood 87, 5257–5268 (1996).

    CAS  PubMed  Google Scholar 

  10. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  11. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  Google Scholar 

  12. Ye, B.H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat. Genet. 16, 161–170 (1997).

    Article  CAS  Google Scholar 

  13. Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  Google Scholar 

  14. Niu, H., Ye, B.H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).

    Article  CAS  Google Scholar 

  15. Bereshchenko, O.R., Gu, W. & Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606–613 (2002).

    Article  CAS  Google Scholar 

  16. Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol. 173, 1158–1165 (2004).

    Article  CAS  Google Scholar 

  17. Fearon, D.T., Manders, P.M. & Wagner, S.D. Bcl-6 uncouples B lymphocyte proliferation from differentiation. Adv. Exp. Med. Biol. 512, 21–28 (2002).

    Article  Google Scholar 

  18. Lo Coco, F. et al. Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin's lymphoma. Blood 83, 1757–1759 (1994).

    CAS  PubMed  Google Scholar 

  19. Ye, B.H. et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J. 14, 6209–6217 (1995).

    Article  CAS  Google Scholar 

  20. Chen, W., Iida, S., Louie, D.C., Dalla-Favera, R. & Chaganti, R.S. Heterologous promoters fused to BCL6 by chromosomal translocations affecting band 3q27 cause its deregulated expression during B-cell differentiation. Blood 91, 603–607 (1998).

    CAS  PubMed  Google Scholar 

  21. Shen, H.M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    Article  CAS  Google Scholar 

  22. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. USA 95, 11816–11821 (1998).

    Article  CAS  Google Scholar 

  23. Migliazza, A. et al. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc. Natl. Acad. Sci. USA 92, 12520–12524 (1995).

    Article  CAS  Google Scholar 

  24. Pasqualucci, L. et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101, 2914–2923 (2003).

    Article  CAS  Google Scholar 

  25. Wang, X., Li, Z., Naganuma, A. & Ye, B.H. Negative autoregulation of BCL-6 is bypassed by genetic alterations in diffuse large B cell lymphomas. Proc. Natl. Acad. Sci. USA 99, 15018–15023 (2002).

    Article  CAS  Google Scholar 

  26. Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455 (2005).

    Article  CAS  Google Scholar 

  27. Shaffer, A.L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000).

    Article  CAS  Google Scholar 

  28. Niu, H., Cattoretti, G. & Dalla-Favera, R. BCL6 controls the expression of the B7–1/CD80 costimulatory receptor in germinal center B cells. J. Exp. Med. 198, 211–221 (2003).

    Article  CAS  Google Scholar 

  29. Phan, R.T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004).

    Article  CAS  Google Scholar 

  30. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat. Cell Biol. 3, 400–408 (2001).

    Article  CAS  Google Scholar 

  31. Gaidano, G. et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 88, 5413–5417 (1991).

    Article  CAS  Google Scholar 

  32. el-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  33. Yu, J. et al. Identification and classification of p53-regulated genes. Proc. Natl. Acad. Sci. USA 96, 14517–14522 (1999).

    Article  CAS  Google Scholar 

  34. Seoane, J., Le, H.V. & Massague, J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  CAS  Google Scholar 

  35. Wu, S. et al. Myc represses differentiation-induced p21 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22, 351–360 (2003).

    Article  CAS  Google Scholar 

  36. Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell 10, 509–521 (2002).

    Article  CAS  Google Scholar 

  37. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl. Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  Google Scholar 

  38. Shaffer, A.L. et al. Signatures of the immune response. Immunity 15, 375–385 (2001).

    Article  CAS  Google Scholar 

  39. Allday, M.J., Inman, G.J., Crawford, D.H. & Farrell, P.J. DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO J. 14, 4994–5005 (1995).

    Article  CAS  Google Scholar 

  40. Chan, T.A., Hwang, P.M., Hermeking, H., Kinzler, K.W. & Vogelstein, B. Cooperative effects of genes controlling the G2/M checkpoint. Genes Dev. 14, 1584–1588 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wanzel, M. et al. Akt and 14–3-3eta regulate Miz1 to control cell-cycle arrest after DNA damage. Nat. Cell Biol. 7, 30–41 (2005).

    Article  CAS  Google Scholar 

  42. Sheikh, M.S. et al. Mechanisms of regulation of WAF1/Cip1 gene expression in human breast carcinoma: role of p53-dependent and independent signal transduction pathways. Oncogene 9, 3407–3415 (1994).

    CAS  PubMed  Google Scholar 

  43. Tang, D. et al. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J. Biol. Chem. 277, 12710–12717 (2002).

    Article  CAS  Google Scholar 

  44. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 3, 392–399 (2001).

    Article  CAS  Google Scholar 

  45. Seoane, J., Le, H.V., Shen, L., Anderson, S.A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004).

    Article  CAS  Google Scholar 

  46. Papavasiliou, F.N. & Schatz, D.G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

    Article  CAS  Google Scholar 

  47. Sale, J.E. & Neuberger, M.S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 9, 859–869 (1998).

    Article  CAS  Google Scholar 

  48. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).

    Article  CAS  Google Scholar 

  49. Offit, K. et al. BCL6 gene rearrangement and other cytogenetic abnormalities in diffuse large cell lymphoma. Leuk. Lymphoma 20, 85–89 (1995).

    Article  CAS  Google Scholar 

  50. Polo, J.M. et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat. Med. 10, 1329–1335 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Seoane and J. Massague (Sloan Kettering Memorial Cancer Center, New York, New York) for advice and for the Miz-1 construct; R. Tjian (University of California, Berkeley, California) for anti-Miz-1; and A. Iavarone and R. Baer for advice, discussions and critically reading the manuscript. Supported by the National Institutes of Health (R.D.-F. and R.T.P.) and the American-Italian Cancer Foundation (K.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Dalla-Favera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, R., Saito, M., Basso, K. et al. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat Immunol 6, 1054–1060 (2005). https://doi.org/10.1038/ni1245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing