Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity

Abstract

Dendritic cells (DCs) regulate various aspects of innate immunity, including natural killer (NK) cell function. Here we define the mechanisms involved in DC–NK cell interactions during viral infection. NK cells were efficiently activated by murine cytomegalovirus (MCMV)–infected CD11b+ DCs. NK cell cytotoxicity required interferon-α and interactions between the NKG2D activating receptor and NKG2D ligand, whereas the production of interferon-γ by NK cells relied mainly on DC-derived interleukin 18. Although Toll-like receptor 9 contributes to antiviral immunity, we found that signaling pathways independent of Toll-like receptor 9 were important in generating immune responses to MCMV, including the production of interferon-α and the induction of NK cell cytotoxicity. Notably, adoptive transfer of MCMV-activated CD11b+ DCs resulted in improved control of MCMV infection, indicating that these cells participate in controlling viral replication in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD11b+ DCs produce cytokines in response to MCMV.
Figure 2: CD11b+ DCs infected with MCMV activate NK cells.
Figure 3: DC-derived type I interferons are required for the activation of NK cell cytotoxicity.
Figure 4: IFN-γ production by NK cells is dependent on DC-derived IL-12 and IL-18.
Figure 5: Ligation of NKG2D in DC–NK cell cocultures contributes to the activation NK cell cytotoxicity.
Figure 6: Transfer of MCMV-activated CD11b+ DCs reduces MCMV replication in vivo.
Figure 7: The IFN-α response to MCMV is dependent on TLR9 in pDCs but not in CD11b+ DCs.
Figure 8: TLR9 deficiency does not affect NK cell cytotoxicity, and its effect on MCMV replication is organ specific.

Similar content being viewed by others

References

  1. Kaisho, T. & Akira, S. Regulation of dendritic cell function through Toll-like receptors. Curr. Mol. Med. 3, 373–385 (2003).

    Article  CAS  Google Scholar 

  2. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  3. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  4. Cooper, M.A., Fehniger, T.A. & Caligiuri, M.A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    Article  CAS  Google Scholar 

  5. Biron, C.A. & Brossay, L. NK cells and NKT cells in innate defense against viral infections. Curr. Opin. Immunol. 13, 458–464 (2001).

    Article  CAS  Google Scholar 

  6. Cerwenka, A. & Lanier, L.L. Ligands for natural killer cell receptors: redundancy or specificity. Immunol. Rev. 181, 158–169 (2001).

    Article  CAS  Google Scholar 

  7. Wu, J. et al. Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J. Immunol. 170, 4196–4200 (2003).

    Article  CAS  Google Scholar 

  8. Smith, H.R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  Google Scholar 

  9. Trinchieri, G., Santoli, D., Dee, R.R. & Knowles, B.B. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation. J. Exp. Med. 147, 1299–1313 (1978).

    Article  CAS  Google Scholar 

  10. Fernandez, N.C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med. 5, 405–411 (1999).

    Article  CAS  Google Scholar 

  11. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150 (2001).

    Article  CAS  Google Scholar 

  12. Orange, J.S. & Biron, C.A. Characterization of early IL-12, IFN-αβ, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J. Immunol. 156, 4746–4756 (1996).

    CAS  Google Scholar 

  13. Granucci, F. et al. A contribution of mouse dendritic cell-derived IL-2 for NK cell activation. J. Exp. Med. 200, 287–295 (2004).

    Article  CAS  Google Scholar 

  14. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    Article  CAS  Google Scholar 

  15. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    Article  CAS  Google Scholar 

  16. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    Article  CAS  Google Scholar 

  17. Scalzo, A.A. Successful control of viruses by NK cells–-a balance of opposing forces? Trends Microbiol. 10, 470–474 (2002).

    Article  CAS  Google Scholar 

  18. Andrews, D.M., Andoniou, C.E., Granucci, F., Ricciardi-Castagnoli, P. & Degli-Esposti, M.A. Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat. Immunol. 2, 1077–1084 (2001).

    Article  CAS  Google Scholar 

  19. Dalod, M. et al. Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon-αβ. J. Exp. Med. 197, 885–898 (2003).

    Article  CAS  Google Scholar 

  20. Dalod, M. et al. Interferon-αβ and interleukin 12 responses to viral infections: Pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 195, 517–528 (2002).

    Article  CAS  Google Scholar 

  21. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  Google Scholar 

  22. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543 (1993).

    Article  CAS  Google Scholar 

  23. Gilliet, M. et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by Flt3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 195, 953–958 (2002).

    Article  CAS  Google Scholar 

  24. Asselin-Paturel, C., Brizard, G., Pin, J.J., Briere, F. & Trinchieri, G. Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J. Immunol. 171, 6466–6477 (2003).

    Article  CAS  Google Scholar 

  25. Yu, Y. et al. Enhancement of human cord blood CD34+ cell-derived NK cell cytotoxicity by dendritic cells. J. Immunol. 166, 1590–1600 (2001).

    Article  CAS  Google Scholar 

  26. Ferlazzo, G. et al. The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur. J. Immunol. 33, 306–313 (2003).

    Article  CAS  Google Scholar 

  27. Pien, G.C., Satoskar, A.R., Takeda, K., Akira, S. & Biron, C.A. Selective IL-18 requirements for induction of compartmental IFN-γ responses during viral infection. J. Immunol. 165, 4787–4791 (2000).

    Article  CAS  Google Scholar 

  28. Gerosa, F. et al. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J. Immunol. 174, 727–734 (2005).

    Article  CAS  Google Scholar 

  29. Jinushi, M. et al. Critical role of MHC class I-related chain A and B expression on IFN-α-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J. Immunol. 170, 1249–1256 (2003).

    Article  CAS  Google Scholar 

  30. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  Google Scholar 

  31. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. & Raulet, D.H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  32. Diefenbach, A., Hsia, J.K., Hsiung, M.Y. & Raulet, D.H. A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur. J. Immunol. 33, 381–391 (2003).

    Article  CAS  Google Scholar 

  33. Carayannopoulos, L.N., Naidenko, O.V., Fremont, D.H. & Yokoyama, W.M. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J. Immunol. 169, 4079–4083 (2002).

    Article  CAS  Google Scholar 

  34. Raulet, D. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

    Article  CAS  Google Scholar 

  35. Scalzo, A.A., Fitzgerald, N.A., Simmons, A., La Vista, A.B. & Shellam, G.R. Cmv1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J. Exp. Med. 171, 1469–1483 (1990).

    Article  CAS  Google Scholar 

  36. Scalzo, A.A. et al. Development of intra-natural killer complex (NKC) recombinant and congenic mouse strains for mapping and functional analysis of NK cell regulatory loci. Immunogenetics 49, 238–241 (1999).

    Article  CAS  Google Scholar 

  37. van Dommelen, S.L.H., Tabarias, H.A., Smyth, M.J. & Degli-Esposti, M.A. Activation of natural killer (NK) T cells during murine cytomegalovirus infection enhances the antiviral response mediated by NK cells. J. Virol. 77, 1877–1884 (2003).

    Article  CAS  Google Scholar 

  38. Loh, J., Chu, D.T., O'Guin, A.K., Yokoyama, W.M. & Virgin, H.W.t. Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J. Virol. 79, 661–667 (2005).

    Article  CAS  Google Scholar 

  39. Tay, C.H. & Welsh, R.M. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J. Virol. 71, 267–275 (1997).

    CAS  Google Scholar 

  40. Tabeta, K. et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 101, 3516–3521 (2004).

    Article  CAS  Google Scholar 

  41. Orange, J.S. & Biron, C.A. An absolute and restricted requirement for IL-12 in natural killer cell IFN-γ production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J. Immunol. 156, 1138–1142 (1996).

    CAS  Google Scholar 

  42. Morelli, A.E. et al. Cytokine production by mouse myeloid dendritic cells in relation to differentiation and terminal maturation induced by lipopolysaccharide or CD40 ligation. Blood 98, 1512–1523 (2001).

    Article  CAS  Google Scholar 

  43. Kamath, A.T., Sheasby, C.E. & Tough, D.F. Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-αβ and IFN-γ. J. Immunol. 174, 767–776 (2005).

    Article  CAS  Google Scholar 

  44. Sun, J. et al. TLR ligands can activate dendritic cells to provide a MyD88-dependent negative signal for Th2 cell development. J. Immunol. 174, 742–751 (2005).

    Article  CAS  Google Scholar 

  45. Semino, C., Angelini, G., Poggi, A. & Rubartelli, A.N.K. iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106, 609–616 (2005).

    Article  CAS  Google Scholar 

  46. Cerwenka, A., Baron, J.L. & Lanier, L.L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl. Acad. Sci. USA 98, 11521–11526 (2001).

    Article  CAS  Google Scholar 

  47. Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    Article  CAS  Google Scholar 

  48. Lodoen, M. et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J. Exp. Med. 197, 1245–1253 (2003).

    Article  CAS  Google Scholar 

  49. Lodoen, M.B. et al. The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60–NKG2D interactions. J. Exp. Med. 200, 1075–1081 (2004).

    Article  CAS  Google Scholar 

  50. Hasan, M. et al. Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J. Virol. 79, 2920–2930 (2005).

    Article  CAS  Google Scholar 

  51. Krmpotic, A. et al. NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J. Exp. Med. 201, 211–220 (2005).

    Article  CAS  Google Scholar 

  52. Ogasawara, K. et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18, 41–51 (2003).

    Article  CAS  Google Scholar 

  53. Krmpotic, A. et al. MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat. Immunol. 3, 529–535 (2002).

    Article  CAS  Google Scholar 

  54. Compton, T. et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77, 4588–4596 (2003).

    Article  CAS  Google Scholar 

  55. Milone, M.C. & Fitzgerald-Bocarsly, P. The mannose receptor mediates induction of IFN-α in peripheral blood dendritic cells by enveloped RNA and DNA viruses. J. Immunol. 161, 2391–2399 (1998).

    CAS  Google Scholar 

  56. Allan, J.E. & Shellam, G.R. Genetic control of murine cytomegalovirus infection: virus titres in resistant and susceptible strains of mice. Arch. Virol. 81, 139–150 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Akira (Research Institute for Microbial Diseases, Osaka University, Osaka, Japan) for generating and providing mice deficient in IL-18, MyD88, TLR2, TLR4 and TLR9; R. Flavell (Yale University School of Medicine, New Haven, Connecticut) for generating and providing mice deficient in TLR3; M. Smyth (Peter MacCallum Cancer Centre, Melbourne, Australia) for advice and for providing mice deficient in IL-12, IL-18 and both IL-12 and IL18; and H. Tabarias and J. Dunn for technical assistance. Supported by the National Health and Medical Research Council of Australia and by a Wellcome Trust Overseas Senior Research Fellowship in Biomedical Science in Australia (M.A.D.-E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariapia A Degli-Esposti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

MCMV infection of CD11b+DCs induces NKG2DL expression. (PDF 58 kb)

Supplementary Fig. 2

Production of IL-12 by CD11b+DCs requires TLR9-mediated signals. (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andoniou, C., van Dommelen, S., Voigt, V. et al. Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat Immunol 6, 1011–1019 (2005). https://doi.org/10.1038/ni1244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing