Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation

Abstract

T cell receptor (TCR) stimulation induces rapid generation of reactive oxygen species, although the mechanisms for this are unclear. Here we found that T cells expressed a functional phagocyte-type nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. TCR crosslinking induced oxidase activation through the recruitment of preformed Fas ligand and Fas. TCR stimulation induced three separable events generating reactive oxygen species: rapid hydrogen peroxide production independent of Fas or NADPH oxidase; sustained hydrogen peroxide production dependent on both Fas and NADPH oxidase; and delayed superoxide production that was dependent on Fas ligand and Fas yet independent of NADPH oxidase. NADPH oxidase–deficient T cells showed enhanced activation of the kinase Erk and a relative increase in T helper type 1 cytokine secretion. Thus, mature T cells express a phagocyte-type NADPH oxidase that regulates elements of TCR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anti-CD3-stimulated generation of ROS in primary T blasts from C57BL/6 or p47phox-deficient mice.
Figure 2: Anti-CD3-stimulated generation of ROS in wild-type and oxidase-deficient T blasts: short-term kinetics.
Figure 3: Purified T cells express p47phox and p67phox.
Figure 4: T cells express an epitope recognized by 7D5 (anti-gp91phox).
Figure 5: Effect of DPI on anti-CD3-stimulated generation of ROS in wild-type and p47phox-deficient T blasts.
Figure 6: Effect of Fas-Ig on anti-CD3-stimulated generation of ROS in wild-type, p47phox-deficient or gp91phox-deficient T blasts.
Figure 7: Anti-CD3-induced MEK-Erk phosphorylation is selectively enhanced and/or sustained in T blasts in conditions in which hydrogen peroxide production is deficient.
Figure 8: Altered cytokine production in T cell blasts from gp91phox-deficient mice.

Similar content being viewed by others

References

  1. Babior, B.M. NADPH oxidase: an update. Blood 93, 1464–1476 (1999).

    CAS  PubMed  Google Scholar 

  2. Segal, B.H., Leto, T.L., Gallin, J.I., Malech, H.L. & Holland, S.M. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79, 170–200 (2000).

    Article  CAS  Google Scholar 

  3. Pollock, J.D. et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9, 202–209 (1995).

    Article  CAS  Google Scholar 

  4. Jackson, S.H., Gallin, J.I. & Holland, S.M. The p47phox mouse knock-out model of chronic granulomatous disease. J. Exp. Med. 182, 751–758 (1995).

    Article  CAS  Google Scholar 

  5. Yang, S., Panoskaltsis-Mortari, A., Shukla, M., Blazar, B.R. & Haddad, I.Y. Exuberant inflammation in nicotinamide adenine dinucleotide phosphate-oxidase-deficient mice after allogeneic marrow transplantation. J. Immunol. 168, 5840–5847 (2002).

    Article  CAS  Google Scholar 

  6. Nathan, C. & Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97, 8841–8848 (2000).

    Article  CAS  Google Scholar 

  7. Ushio-Fukai, M. et al. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 274, 22699–226704 (1999).

    Article  CAS  Google Scholar 

  8. Bae, Y.S. et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221 (1997).

    Article  CAS  Google Scholar 

  9. Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).

    Article  CAS  Google Scholar 

  10. Lee, S.L., Wang, W.W., Finlay, G.A. & Fanburg, B.L. Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. Am. J. Physiol. 277, L282–L291 (1999).

    CAS  PubMed  Google Scholar 

  11. Lo, Y.Y.C., Wong, J.M.S. & Cruz, T.F. Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J. Biol. Chem. 271, 15703–15707 (1996).

    Article  CAS  Google Scholar 

  12. Krieger-Brauer, H.I. & Kather, H. The stimulus-sensitive H2O2-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines. Biochem. J. 307, 543–548 (1995).

    Article  CAS  Google Scholar 

  13. Lee, J.R. & Koretzky, G.A. Production of reactive oxygen intermediates following CD40 ligation correlates with c-Jun N-terminal kinase activation and IL-6 secretion in murine B lymphocytes. Eur. J. Immunol. 28, 4188–4197 (1998).

    Article  CAS  Google Scholar 

  14. Sundaresan, M. et al. Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem. J. 318, 379–382 (1996).

    Article  CAS  Google Scholar 

  15. Jayanthi, S., Ordonez, S., McCoy, M.T. & Cadet, J.L. Dual mechanism of Fas-induced cell death in neuroglioma cells: a role for reactive oxygen species. Brain Res. Mol. Brain Res. 72, 158–165 (1999).

    Article  CAS  Google Scholar 

  16. Condino-Neto, A. & Newburger, P.E. NADPH oxidase activity and cytochrome b558 content of human Epstein-Barr-virus-transformed B lymphocytes correlate with expression of genes encoding components of the oxidase system. Arch. Biochem. Biophys. 360, 158–164 (1998).

    Article  CAS  Google Scholar 

  17. Frey, R.S., Rahman, A., Kefer, J.C., Minshall, R.D. & Malik, A.B. PKCz regulates TNF-a-induced activation of NADPH oxidase in endothelial cells. Circ. Res. 90, 1012–1019 (2002).

    Article  CAS  Google Scholar 

  18. Bendall, J.K., Cave, A.C., Heymes, C., Gall, N. & Shah, A.M. Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105, 293–296 (2002).

    Article  CAS  Google Scholar 

  19. Griendling, K.K., Sorescu, D. & Ushio-Fukai, M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res. 86, 494–501 (2000).

    Article  CAS  Google Scholar 

  20. Lassegue, B. et al. Novel gp91phox homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 88, 888–894 (2001).

    Article  CAS  Google Scholar 

  21. Banfi, B., Clark, R.A., Steger, K. & Krause, K.H. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J. Biol. Chem. 278, 3510–3513 (2003).

    Article  CAS  Google Scholar 

  22. Devadas, S., Zaritskaya, L., Rhee, S.G., Oberley, L. & Williams, M.S. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J. Exp. Med. 195, 59–70 (2002).

    Article  CAS  Google Scholar 

  23. van Reyk, D.M., King, N.J., Dinauer, M.C. & Hunt, N.H. The intracellular oxidation of 2′,7′-dichlorofluorescein in murine T lymphocytes. Free Radic. Biol. Med. 30, 82–88 (2001).

    Article  CAS  Google Scholar 

  24. Kwon, J., Devadas, S. & Williams, M.S. T cell receptor-stimulated generation of hydrogen peroxide inhibits MEK-ERK activation and lck serine phosphorylation. Free Radic. Biol. Med. 35, 406–417 (2003).

    Article  CAS  Google Scholar 

  25. Williams, M.S. & Henkart, P.A. The role of reactive oxygen intermediates in TCR-induced death of T cell blasts and hybridomas. J. Immunol. 157, 2395–2402 (1996).

    CAS  PubMed  Google Scholar 

  26. Hasebe, T., Someya, A. & Nagaoka, I. Identification of a splice variant mRNA of p40phox, an NADPH oxidase component of phagocytes. FEBS Lett. 455, 257–261 (1999).

    Article  CAS  Google Scholar 

  27. Lomax, K.L., Leto, T.L., Nunoi, H., Gallin, J.I. & Malech, H.L. Recombinant 47-kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease. Science 245, 409–412 (1989).

    Article  CAS  Google Scholar 

  28. Emmendorffer, A. et al. Evaluation of flow cytometric methods for diagnosis of chronic granulomatous disease variants under routine laboratory conditions. Cytometry 18, 147–155 (1994).

    Article  CAS  Google Scholar 

  29. Yamauchi, A. et al. Location of the epitope for 7D5, a monoclonal antibody raised against human flavocytochrome b558, to the extracellular peptide portion of primate gp91phox. Microbiol. Immunol. 45, 249–257 (2001).

    Article  CAS  Google Scholar 

  30. Li, J.M. & Shah, A.M. Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J. Biol. Chem. 277, 19952–19960 (2002).

    Article  CAS  Google Scholar 

  31. Maly, F.E. et al. Superoxide-dependent nitroblue tetrazolium reduction and expression of cytochrome b-245 components by human tonsillar B lymphocytes and B cell lines. J. Immunol. 142, 1260–1267 (1989).

    CAS  PubMed  Google Scholar 

  32. Bossi, G. & Griffiths, G.M. Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat. Med. 5, 90–96 (1999).

    Article  CAS  Google Scholar 

  33. Martinez-Lorenzo, M.J. et al. Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J. Immunol. 163, 1274–1281 (1999).

    CAS  PubMed  Google Scholar 

  34. Zhang, J. et al. Regulation of fas ligand expression during activation-induced cell death in T cells by p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase. J. Exp. Med. 191, 1017–1030 (2000).

    Article  CAS  Google Scholar 

  35. Ju, S.T. et al. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444–448 (1995).

    Article  CAS  Google Scholar 

  36. Williams, M.S. & Kwon, J. T cell receptor stimulation, reactive oxygen species and cell signaling. Free Radic. Biol. Med. advance online publication, 20 June 2004 (do:10.016/j.freeradbiomed.2004.05.029).

  37. Suzuki, Y., Ono, Y. & Hirabayashi, Y. Rapid and specific reactive oxygen species generation via NADPH oxidase activation during Fas-mediated apoptosis. FEBS Lett. 425, 209–212 (1998).

    Article  CAS  Google Scholar 

  38. Tsunawaki, S. & Yoshikawa, K. Relationships of p40phox with p67phox in the activation and expression of the human respiratory burst NADPH oxidase. J. Biochem. (Tokyo) 128, 777–783 (2000).

    Article  CAS  Google Scholar 

  39. Krieger-Brauer, H.I. & Kather, H. Human fat cells possess a plasma membrane-bound H2O2-generating system that is activated by insulin via a mechanism bypassing the receptor kinase. J. Clin. Invest. 89, 1006–1013 (1992).

    Article  CAS  Google Scholar 

  40. Thannickal, V.J. & Fanburg, B.L. Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor b1. J. Biol. Chem. 270, 30334–30338 (1995).

    Article  CAS  Google Scholar 

  41. Mahadev, K. et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol. Cell Biol. 24, 1844–1854 (2004).

    Article  CAS  Google Scholar 

  42. Geiszt, M., Witta, J., Baffi, J., Lekstrom, K. & Leto, T.L. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 17, 1502–1504 (2003).

    Article  CAS  Google Scholar 

  43. Leavey, P.J. et al. A 29-kDa protein associated with p67phox expresses both peroxiredoxin and phospholipase A2 activity and enhances superoxide anion production by a cell-free system of NADPH oxidase activity. J. Biol. Chem. 277, 45181–45187 (2002).

    Article  CAS  Google Scholar 

  44. Lambeth, J.D. Nox enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  Google Scholar 

  45. Esposti, M.D., Hatzinisiriou, I., McLennan, H. & Ralph, S. Bcl-2 and mitochondrial oxygen radicals. New approaches with reactive oxygen species-sensitive probes. J. Biol. Chem. 274, 29831–29837 (1999).

    Article  CAS  Google Scholar 

  46. Banfi, B. et al. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 276, 37594–37601 (2001).

    Article  CAS  Google Scholar 

  47. Ha, Y.J. & Lee, J.R. Role of TNF receptor-associated factor 3 in the CD40 signaling by production of reactive oxygen species through association with p40phox, a cytosolic subunit of nicotinamide adenine dinucleotide phosphate oxidase. J. Immunol. 172, 231–239 (2004).

    Article  CAS  Google Scholar 

  48. Martinez-Lorenzo, M.J., Alava, M.A., Anel, A., Pineiro, A. & Naval, J. Release of preformed Fas ligand in soluble form is the major factor for activation-induced death of Jurkat T cells. Immunology 89, 511–517 (1996).

    Article  CAS  Google Scholar 

  49. Nagata, S. & Suda, T. Fas and Fas ligand: lpr and gld mutations. Immunol. Today 16, 39–43 (1995).

    Article  CAS  Google Scholar 

  50. Seshiah, P.N. et al. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ. Res. 91, 406–413 (2002).

    Article  CAS  Google Scholar 

  51. Jorritsma, P.J., Brogdon, J.L. & Bottomly, K. Role of TCR-induced extracellular signal-regulated kinase activation in the regulation of early IL-4 expression in naive CD4+ T cells. J. Immunol. 170, 2427–2434 (2003).

    Article  CAS  Google Scholar 

  52. Segal, B.H. et al. The p47phox−/− mouse model of chronic granulomatous disease has normal granuloma formation and cytokine responses to Mycobacterium avium and Schistosoma mansoni eggs. Infect. Immun. 67, 1659–1665 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Henkart and D. Scott for critical reading of the manuscript. Supported by the American Heart Association (0030033N) and American Red Cross.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effect of an inhibitor of nitric oxide synthase (L-NMMA) on TCR stimulated ROS generation. (PDF 40 kb)

Supplementary Fig. 2

DCFDA and DHE oxidation occurs in T cells. (PDF 67 kb)

Supplementary Fig. 3

Purity of T cell blast preparations. (PDF 114 kb)

Supplementary Fig. 4

Specific expression of NADPH oxidase component message by murine CD4+ T cell blasts. (PDF 79 kb)

Supplementary Fig. 5

Role of FasL-Fas interactions in anti-CD3 stimulated generation of reactive oxygen species in human T blasts. (PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, S., Devadas, S., Kwon, J. et al. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol 5, 818–827 (2004). https://doi.org/10.1038/ni1096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing