Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death

Abstract

Clonotypic elimination of activated T cells through Fas–Fas ligand (CD95–CD95L) interactions is one mechanism of peripheral self-tolerance. T cell receptor (TCR) stimuli trigger FasL synthesis but also sensitize activated T cells to Fas-mediated apoptosis through an unknown mechanism. Here we show that TCR restimulation of activated human CD4+ T cells resulted in Fas translocation into lipid raft microdomains before binding FasL, rendering these cells sensitive to apoptosis after stimulation with bivalent antibody or FasL. Disruption of lipid rafts reduced sensitivity to Fas-mediated apoptosis after TCR restimulation. Thus, the redistribution of Fas and other tumor necrosis factor family receptors into and out of lipid rafts may dynamically regulate the efficiency and outcomes of signaling by these receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential Fas signaling efficiency in cell lines.
Figure 2: The presence of Fas in lipid rafts controls signaling efficiency.
Figure 3: Preassociated Fas preferentially resides within lipid rafts.
Figure 4: Activated human CD4+ T cells become competent to die via Fas after TCR restimulation.
Figure 5: TCR restimulation induces redistribution of Fas into lipid rafts before signal complex formation.
Figure 6: Fas redistribution to lipid rafts occurs in the absence of FasL synthesis.
Figure 7: T cells become sensitive to FasL after TCR restimulation.

Similar content being viewed by others

References

  1. Lenardo, M. et al. Mature T lymphocyte apoptosis—immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999).

    Article  CAS  Google Scholar 

  2. Abbas, A.K. Die and let live: eliminating dangerous lymphocytes. Cell 84, 655–657 (1996).

    Article  CAS  Google Scholar 

  3. Hildeman, D.A. et al. Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16, 759–767 (2002).

    Article  CAS  Google Scholar 

  4. Hornung, F., Zheng, L. & Lenardo, M.J. Maintenance of clonotype specificity in CD95/Apo-1/Fas-mediated apoptosis of mature T lymphocytes. J. Immunol. 159, 3816–3822 (1997).

    CAS  PubMed  Google Scholar 

  5. Combadiere, B. et al. Differential TCR signaling regulates apoptosis and immunopathology during antigen responses in vivo. Immunity 9, 305–313 (1998).

    Article  CAS  Google Scholar 

  6. Van Parijs, L., Peterson, D.A. & Abbas, A.K. The Fas/Fas ligand pathway and Bcl-2 regulate T cell responses to model self and foreign antigens. Immunity 8, 265–274 (1998).

    Article  CAS  Google Scholar 

  7. Wong, B., Arron, J. & Choi, Y. T cell receptor signals enhance susceptibility to Fas-mediated apoptosis. J. Exp. Med. 186, 1939–1944 (1997).

    Article  CAS  Google Scholar 

  8. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. Embo. J. 17, 1675–1687 (1998).

    Article  CAS  Google Scholar 

  9. Dykstra, M., Cherukuri, A., Sohn, H.W., Tzeng, S.J. & Pierce, S.K. Location is everything: Lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457–481 (2003).

    Article  CAS  Google Scholar 

  10. Sedwick, C.E. & Altman, A. Ordered just so: lipid rafts and lymphocyte function. Sci. STKE 2002, RE2 (2002).

    PubMed  Google Scholar 

  11. Scheel-Toellner, D. et al. The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem. Biophys. Res. Commun. 297, 876–879 (2002).

    Article  CAS  Google Scholar 

  12. Hueber, A.O., Bernard, A.M., Herincs, Z., Couzinet, A. & He, H.T. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep. 3, 190–196 (2002).

    Article  CAS  Google Scholar 

  13. Garofalo, T. et al. Association of the death-inducing signaling complex with microdomains after triggering through CD95/Fas. Evidence for caspase-8-ganglioside interaction in T cells. J. Biol. Chem. 278, 8309–8315 (2003).

    Article  CAS  Google Scholar 

  14. Cremesti, A. et al. Ceramide enables fas to cap and kill. J. Biol. Chem. 276, 23954–23961 (2001).

    Article  CAS  Google Scholar 

  15. Legler, D.F., Micheau, O., Doucey, M.A., Tschopp, J. & Bron, C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity 18, 655–664 (2003).

    Article  CAS  Google Scholar 

  16. Algeciras-Schimnich, A. et al. Molecular ordering of the initial signaling events of CD95. Mol. Cell. Biol. 22, 207–220 (2002).

    Article  CAS  Google Scholar 

  17. Huang, D.C. et al. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc. Natl. Acad. Sci. USA 96, 14871–14876 (1999).

    Article  CAS  Google Scholar 

  18. Keller, P. & Simons, K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell. Biol. 140, 1357–1367 (1998).

    Article  CAS  Google Scholar 

  19. Siegel, R.M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).

    Article  CAS  Google Scholar 

  20. Chan, F.K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).

    Article  CAS  Google Scholar 

  21. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  Google Scholar 

  22. Friedrichson, T. & Kurzchalia, T.V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).

    Article  CAS  Google Scholar 

  23. Scaffidi, C., Schmitz, I., Krammer, P.H. & Peter, M.E. The role of c-FLIP in modulation of CD95-induced apoptosis. J. Biol. Chem. 274, 1541–1548 (1999).

    Article  CAS  Google Scholar 

  24. Van Parijs, L., Ibraghimov, A. & Abbas, A.K. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity 4, 321–328 (1996).

    Article  CAS  Google Scholar 

  25. Siegel, R.M., Chan, F.K., Chun, H.J. & Lenardo, M.J. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat. Immunol. 1, 469–474 (2000).

    Article  CAS  Google Scholar 

  26. Micheau, O. et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J. Biol. Chem. 277, 45162–45171 (2002).

    Article  CAS  Google Scholar 

  27. Strasser, A., Harris, A.W., Huang, D.C., Krammer, P.H. & Cory, S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. Embo. J. 14, 6136–6147 (1995).

    Article  CAS  Google Scholar 

  28. Sprent, J. & Kishimoto, H. The thymus and negative selection. Immunol. Rev. 185, 126–135 (2002).

    Article  CAS  Google Scholar 

  29. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  Google Scholar 

  30. Parlato, S. et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. Embo. J. 19, 5123–5134 (2000).

    Article  CAS  Google Scholar 

  31. Martin, D.A. et al. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc. Natl. Acad. Sci. USA 96, 4552–4557 (1999).

    Article  CAS  Google Scholar 

  32. Sproul, T.W., Malapati, S., Kim, J. & Pierce, S.K. Cutting edge: B cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J. Immunol. 165, 6020–6023 (2000).

    Article  CAS  Google Scholar 

  33. Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-κB activation. Nat. Immunol. 3, 836–843 (2002).

    Article  CAS  Google Scholar 

  34. Legler, D.F., Doucey, M.A., Cerottini, J.C., Bron, C. & Luescher, I.F. Selective inhibition of CTL activation by a dipalmitoyl-phospholipid that prevents the recruitment of signaling molecules to lipid rafts. FASEB J. 15, 1601–1603 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Lenardo, S. Pierce, J. Rivera and P. Schwartzberg for critically reviewing the manuscript; L. Zheng, F. Hornung and I. Stefanova for discussions; and A. Cherukuri for technical assistance. J.R.M. is a Howard Hughes Medical Institute–National Institutes of Health Research Scholar and is supported by grant 5-T32-ES007079 from the US National Institute of Environmental Health Sciences (National Institutes of Health).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M Siegel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muppidi, J., Siegel, R. Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nat Immunol 5, 182–189 (2004). https://doi.org/10.1038/ni1024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing