Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of PI3K in immune cells

Abstract

Members of the phosphoinositide-3 kinase (PI3K) family control several cellular responses including cell growth, survival, cytoskeletal remodeling and the trafficking of intracellular organelles in many different types of cell. In particular PI3K has important functions in the immune system. It has been difficult to evaluate the roles of distinct PI3Ks in cellular immune responses because no PI3K inhibitors are specific for individual family members and because most stimuli activate several PI3K enzymes. The development of gene-targeted mice now enables us to examine the physiological functions of individual PI3K enzymes in the immune system in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolism and immune system functions of phosphoinositides.
Figure 2: Structural characteristics of the PI3K family.
Figure 3: Signal transduction pathways involving PI3Ks in immune cells.

Similar content being viewed by others

References

  1. Kane, L.P., Lin, J. & Weiss, A. Signal transduction by the TCR for antigen. Curr. Opin. Immunol. 12, 242–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Kurosaki, T. Regulation of B-cell signal transduction by adaptor proteins. Nat. Rev. Immunol. 2, 354–363 (2002),

    CAS  PubMed  Google Scholar 

  3. Kinet, J.P. The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu. Rev. Immunol. 17, 931–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Wymann, M.P. & Pirola, L. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1436, 127–150 (1998).

    CAS  PubMed  Google Scholar 

  5. Fruman, D.A., Meyers, R.E. & Cantley, L.C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 (1998).

    CAS  PubMed  Google Scholar 

  6. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    CAS  PubMed  Google Scholar 

  7. Katso, R. et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615–675 (2001).

    CAS  PubMed  Google Scholar 

  8. Walker, E.H., Perisic, O., Ried, C., Stephens, L. & Williams, R.L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402, 313–320 (1999).

    CAS  PubMed  Google Scholar 

  9. Pacold, M.E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ. Cell 103, 931–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Okkenhaug, K. & Vanhaesebroeck, B. New responsibilities for the PI3K regulatory subunit p85α. Science's STKE 65, 1–5 (2001). http://stke.sciencemag.org/cgi/content/full/sigtrans;2001/65/pe1

    Google Scholar 

  11. Cheever M.L. et al. Phox domain interaction with PtdIns3 targets the Vam7 t-SNARE to vacuole membranes. Nat. Cell Biol. 3, 613–618 (2002).

    Google Scholar 

  12. Xu, Y., Hortsman, H., Seet, L., Wong, S.H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns3P. Nat. Cell Biol. 3, 658–666 (2002).

    Google Scholar 

  13. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat. Cell Biol. 3, 675–678 (2001).

    CAS  PubMed  Google Scholar 

  14. Ellson, C.D. et al. PtdIns3P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat. Cell Biol. 3, 679–682 (2001).

    CAS  PubMed  Google Scholar 

  15. Didichenko, S.A. & Thelen, M. Phosphatidylinositol 3-kinase C2α contains a nuclear localization sequence and associates with nuclear speckles. J. Biol. Chem. 276, 48135–48142 (2001).

    CAS  PubMed  Google Scholar 

  16. Cantley, L.C. & Neel, B.G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. USA 96, 4240–4245 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ward, S.G. & Cantrell, D.A. Phosphoinositide 3-kinases in T lymphocyte activation. Curr. Opin. Immunol. 13, 332–338 (2001).

    CAS  PubMed  Google Scholar 

  18. Marshall, A.J., Niiro, H., Yun, T.J. & Clark, E.A. Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cγ pathway. Immunol. Rev. 176, 30–46 (2000).

    CAS  PubMed  Google Scholar 

  19. Kurosaki, T. & Okada, T. Regulation of phospholipase C-γ2 and phosphoinositide 3-kinase pathways by adaptor proteins in B lymphocytes. Int. Rev. Immunol. 20, 697–711 (2001).

    CAS  PubMed  Google Scholar 

  20. Turner, H. & Kinet, J.P. Signalling through the high-affinity IgE receptor FcεRI. Nature 402, B24–B30 (1999).

    CAS  PubMed  Google Scholar 

  21. Jiang, K. et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat. Immunol. 1, 419–425 (2000).

    CAS  PubMed  Google Scholar 

  22. Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat. Immunol. 2, 325–332 (2001).

    CAS  PubMed  Google Scholar 

  23. Jones, R.G. et al. CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J. Exp. Med. 196, 335–348 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Harada, Y. et al. Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo. J. Immunol. 166, 3797–3803 (2001).

    CAS  PubMed  Google Scholar 

  25. Wang, Y. et al. The physiologic role of CD19 cytoplasmic tyrosines. Immunity 17, 501–514 (2002).

    CAS  PubMed  Google Scholar 

  26. Gibbins, J.M. et al. The p85 subunit of phosphatidylinositol 3-kinase associates with the Fc receptor γ-chain and linker for activitor of T cells (LAT) in platelets stimulated by collagen and convulxin. J. Biol. Chem. 273, 34437–34443 (1998).

    CAS  PubMed  Google Scholar 

  27. Okada, T., Maeda, A., Iwamatsu, A., Gotoh, K. & Kurosaki, T. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 13, 817–827 (2000).

    CAS  PubMed  Google Scholar 

  28. Bone, H. & Williams, N.A. Antigen-receptor cross-linking and lipopolysaccharide trigger distinct phosphoinositide 3-kinase-dependent pathways to NF-κB activation in primary B cells. Int. Immunol. 13, 807–816 (2001).

    CAS  PubMed  Google Scholar 

  29. Andjelic, S. et al. Phosphatidylinositol 3-kinase and NF-κB/Rel are at the divergence of CD40-mediated proliferation and survival pathways. J. Immunol. 165, 3860–3867 (2000).

    CAS  PubMed  Google Scholar 

  30. Ardeshna, K.M., Pizzey, A.R., Devereux, S. & Khwaja, A. The PI3 kinase, p38 SAP kinase, and NF-κB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96, 1039–1046 (2000).

    CAS  PubMed  Google Scholar 

  31. Arbibe, L. et al. Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nat. Immunol. 1, 533–540 (2000).

    CAS  PubMed  Google Scholar 

  32. Fukao, T. et al. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3, 875–881 (2002).

    CAS  PubMed  Google Scholar 

  33. Ishii, K.J. et al. Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation. J. Exp. Med. 196, 269–274 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    CAS  PubMed  Google Scholar 

  35. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    CAS  PubMed  Google Scholar 

  36. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    CAS  PubMed  Google Scholar 

  37. Laffargue, M. et al. Phosphoinositide 3-kinase γ is an essential amplifier of mast cell function. Immunity 16, 441–451 (2002).

    CAS  PubMed  Google Scholar 

  38. Ferguson, K.M. et al. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol. Cell 6, 373–384 (2000).

    CAS  PubMed  Google Scholar 

  39. Satterthwaite, A.B., Li., Z. & Witte, O.N. Btk function in B cell development and response. Semin. Immunol. 10, 309–316 (1998).

    CAS  PubMed  Google Scholar 

  40. Suzuki, H. et al. PI3K and Btk differentially regulate B cell antigen receptor mediated signal transduction. Nat. Immunol. 4, 280–286 (2003).

    PubMed  Google Scholar 

  41. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  42. Clayton, E. et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jou, S.-T. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol. Cell. Biol. 22, 8580–8591 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Walker, E.H. et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 6, 909–919 (2000).

    CAS  PubMed  Google Scholar 

  45. Bi, L., Okabe, I., Bernard, D.J., Wynshaw-Boris, A. & Nussbaum, R.L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999).

    CAS  PubMed  Google Scholar 

  46. Bi, L., Okabe, I., Bernard, D.J. & Nussbaum, R.L. Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI 3-kinase. Mamm. Genome 13, 169–172 (2002).

    CAS  PubMed  Google Scholar 

  47. Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nat. Genet. 21, 230–235 (1999).

    CAS  PubMed  Google Scholar 

  48. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    CAS  PubMed  Google Scholar 

  49. Fruman, D.A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    CAS  PubMed  Google Scholar 

  50. Ueki, K. et al. Increased insulin sensitivity in mice lacking p85β subunit of phosphoinositide 3-kinase. Proc. Natl. Acad. Sci. USA 99, 419–424 (2002).

    CAS  PubMed  Google Scholar 

  51. Helgason, C.D. et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12, 1610–1620 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, Q. et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev. 13, 786–791 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P.P. Pten is essential for embryonic development and tumour suppression. Nat. Genet. 19, 348–355 (1998).

    CAS  PubMed  Google Scholar 

  54. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumorsuppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    CAS  PubMed  Google Scholar 

  55. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 4, 513–518 (2002).

    CAS  PubMed  Google Scholar 

  56. Vieira, O.V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Siddhanta, U., McIlroy, J., Shah, A., Zhang, Y. & Backer, J.M. Distinct roles for the p110α and hVPS34 phosphatidylinositol 3′-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J. Cell Biol. 143, 1647–1659 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    CAS  PubMed  Google Scholar 

  59. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251–276 (1995).

    CAS  PubMed  Google Scholar 

  60. Frucht, D.M. et al. IFN-γ production by antigen-presenting cells: mechanisms emerge. Trends Immunol. 22, 556–560 (2001).

    CAS  PubMed  Google Scholar 

  61. MacMicking, J., Xie, Q.-W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350 (1997).

    CAS  PubMed  Google Scholar 

  62. Guha, M. & Mackman, N. The phosphatidylinositol 3-kinase–Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J. Biol. Chem. 277, 32124–32132 (2002).

    CAS  PubMed  Google Scholar 

  63. Fukao, T. et al. Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice. Nat. Immunol. 3, 295–304 (2002).

    CAS  PubMed  Google Scholar 

  64. Kissel, H. et al. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J. 19, 1312–1326 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gu, H. et al. Essential role for Gab2 in the allergic response. Nature 412, 186–190 (2001).

    CAS  PubMed  Google Scholar 

  66. Nishida, K. et al. Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood 99, 1866–1869 (2002).

    PubMed  Google Scholar 

  67. Lu-Kuo, J.M., Fruman, D.A., Joyal, D.M., Cantley, L.C. & Katz, H.R. Impaired kit- but not FcεRI-initiated mast cell activation in the absence of phosphoinositide 3-kinase p85α gene products. J. Biol. Chem. 275, 6022–6029 (2000).

    CAS  PubMed  Google Scholar 

  68. Huber, M. et al. The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation. Proc. Natl. Acad. Sci. USA 95, 11330–11335 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science 286, 1949–1954 (1999).

    CAS  PubMed  Google Scholar 

  70. Leitges, M. et al. Immunodeficiency in protein kinase Cβ-deficient mice. Science 273, 788–791 (1996).

    CAS  PubMed  Google Scholar 

  71. Wang, D. et al. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25–35 (2000).

    PubMed  Google Scholar 

  72. Tedford, K. et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat. Immunol. 2, 548–555 (2001).

    CAS  PubMed  Google Scholar 

  73. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).

    CAS  PubMed  Google Scholar 

  74. Rickert, R.C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    CAS  PubMed  Google Scholar 

  75. Ono, M. et al. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90, 293–301 (1997).

    CAS  PubMed  Google Scholar 

  76. Liu, Q. et al. The inositol polyphosphate 5-phosphatase ship is a crucial negative regulator of B cell antigen receptor signaling. J. Exp. Med. 188, 1333–1342 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dustin, M.L. & Cooper, J.A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat. Immunol. 1, 23–29 (2000).

    CAS  PubMed  Google Scholar 

  78. Costello, P.S., Gallagher, M. & Cantrell, D.A. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nat. Immunol. 3, 1082–1089 (2002).

    CAS  PubMed  Google Scholar 

  79. Harriague, J. & Bismuth, G. Imaging antigen-induced PI3K activation in T cells. Nat. Immunol. 3, 1090–1096 (2002).

    CAS  PubMed  Google Scholar 

  80. Anzelon, A.N., Wu, H. & Ricker, R.C. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat. Immunol. 4, 287–294 (2003).

    CAS  PubMed  Google Scholar 

  81. Suzuki, A. et al. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J. Exp. Med. 197, 657–667 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    CAS  PubMed  Google Scholar 

  83. Fang, D. & Liu, Y.C. Proteolysis-independent regulation of PI3K by Cbl-b–mediated ubiquitination in T cells. Nat. Immunol. 2, 870–875 (2001).

    CAS  PubMed  Google Scholar 

  84. Ireton, K., Payrastre, B. & Cossart, P. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J. Biol. Chem. 274, 17025–17032 (1999).

    CAS  PubMed  Google Scholar 

  85. Mansell, A., Khelef, N., Cossart, P. & O'Neill, L.A. Internalin B activates nuclear factor-κB via Ras, phosphoinositide 3-kinase, and Akt. J. Biol. Chem. 276, 43597–43603 (2001).

    CAS  PubMed  Google Scholar 

  86. Celli, J., Olivier, M. & Finlay, B.B. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J. 20, 1245–1258 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Norris, F.A. et al. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. USA 95, 14057–14059 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank T. Kadowaki, Y. Terauchi and many other colleagues for fruitful collaborations, and K. Takatsu, T. Kurosaki, L.K. Clayton and members of my laboratory for valuable discussions. Supported by a Grant-in-Aid for Creative Scientific Research (13GS0015) and a Grant-in-Aid for Scientific Research B (14370116) from the Japan Society for the Promotion of Science, a Grant-in-Aid for Scientific Research on Priority Areas C (13226112, 14021110), a National Grant-in-Aid for the Establishment of a High-Tech Research Center in a private University, a grant for the Promotion of the Advancement of Education and Research in Graduate Schools, and a Scientific Frontier Research Grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyasu, S. The role of PI3K in immune cells. Nat Immunol 4, 313–319 (2003). https://doi.org/10.1038/ni0403-313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0403-313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing