Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cell fitness determined by signal strength

Abstract

Two potential outcomes confront proliferating antigen-stimulated naive T cells: differentiation to effector and memory cells, or deletion. How stimulation affects cell fate is unclear. Autonomous CD8+ T cell differentiation has been proposed, but this does not explain the abortive proliferation of T cells induced by immature dendritic cells. Here we show that human and mouse CD4+ and CD8+ T cells receiving short or weak stimulation of the T cell receptor proliferate in response to interleukin 2 (IL-2) but are not 'fit' because they die by neglect, fail to proliferate in response to IL-7 and IL-15 and disappear in vivo. Conversely, prolonged or strong stimulation promotes 'fitness' by enhancing survival and cytokine responsiveness. Our results are consistent with the concept that signal strength drives progressive T cell differentiation and the acquisition of fitness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Duration and strength of stimulation determine T cell survival and cytokine responsiveness.
Figure 2: Prolonged interactions with mature DCs promote T cell fitness.
Figure 3: T cell fitness is associated with enhanced cytokine receptor expression and a high Bcl-xL to mitochondria ratio.
Figure 4: Strength of stimulation primes T cells for expansion or deletion in vivo.

Similar content being viewed by others

References

  1. Kurts, C., Kosaka, H., Carbone, F.R., Miller, J.F. & Heath, W.R. Class I–restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  Google Scholar 

  2. Heath, W.R. & Carbone, F.R. Cross-presentation in viral immunity and self-tolerance. Nat. Rev. Immunol. 1, 126–134 (2001).

    Article  CAS  Google Scholar 

  3. Hernandez, J., Aung, S., Redmond, W.L. & Sherman, L.A. Phenotypic and functional analysis of CD8+ T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J. Exp. Med. 194, 707–717 (2001).

    Article  CAS  Google Scholar 

  4. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  Google Scholar 

  5. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).

    Article  CAS  Google Scholar 

  6. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  Google Scholar 

  7. Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signalling determines T cell polarization. Eur. J. Immunol. 29, 4092–4101 (1999).

    Article  CAS  Google Scholar 

  8. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  9. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  Google Scholar 

  10. Langenkamp, A. et al. T cell priming by dendritic cells: thresholds for proliferation, differentiation and death and intraclonal functional diversification. Eur. J. Immunol. 32, 2046–2054 (2002).

    Article  CAS  Google Scholar 

  11. Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors and memory cells. Science 290, 92–97 (2000).

    Article  CAS  Google Scholar 

  12. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  Google Scholar 

  13. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    Article  CAS  Google Scholar 

  14. Wulfing, C. et al. Kinetics and extent of T cell activation as measured with the calcium signal. J. Exp. Med. 185, 1815–1825 (1997).

    Article  CAS  Google Scholar 

  15. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  Google Scholar 

  16. Tuosto, L. & Acuto, O. CD28 affects the earliest signaling events generated by TCR engagement. Eur. J. Immunol. 28, 2131–2142 (1998).

    Article  CAS  Google Scholar 

  17. Fraser, J.D., Irving, B.A., Crabtree, G.R. & Weiss, A. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 251, 313–316 (1991).

    Article  CAS  Google Scholar 

  18. van Stipdonk, M.J., Lemmens, E.E. & Schoenberger, S.P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423–429 (2001).

    Article  CAS  Google Scholar 

  19. Kaech, S.M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  20. Plas, D.R., Rathmell, J.C. & Thompson, C.B. Homeostatic control of lymphocyte survival: potential origins and implications. Nat. Immunol. 3, 515–521 (2002).

    Article  CAS  Google Scholar 

  21. Goldrath, A.W. et al. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 195, 1515–1522 (2002).

    Article  CAS  Google Scholar 

  22. Becker, T.C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541–1548 (2002).

    Article  CAS  Google Scholar 

  23. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  Google Scholar 

  24. Zhang, X., Sun, S., Hwang, I., Tough, D.F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    Article  CAS  Google Scholar 

  25. Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  Google Scholar 

  26. Vander Heiden, M.G. & Thompson, C.B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol. 1, E209–E216 (1999).

    Article  CAS  Google Scholar 

  27. Newton, K. & Strasser, A. Cell death control in lymphocytes. Adv. Immunol. 76, 179–226 (2000).

    Article  CAS  Google Scholar 

  28. Broome, H.E., Dargan, C.M., Krajewski, S. & Reed, J.C. Expression of Bcl-2, Bcl-x, and Bax after T cell activation and IL-2 withdrawal. J. Immunol. 155, 2311–2317 (1995).

    CAS  PubMed  Google Scholar 

  29. Gett, A.V. & Hodgkin, P.D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA 95, 9488–9493 (1998).

    Article  CAS  Google Scholar 

  30. Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  Google Scholar 

  31. Tanchot, C. et al. Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity 8, 581–590 (1998).

    Article  CAS  Google Scholar 

  32. Schwartz, R.H. T cell clonal anergy. Curr. Opin. Immunol. 9, 351–357 (1997).

    Article  CAS  Google Scholar 

  33. Wells, A.D., Walsh, M.C., Sankaran, D. & Turka, L.A. T cell effector function and anergy avoidance are quantitatively linked to cell division. J. Immunol. 165, 2432–2443 (2000).

    Article  CAS  Google Scholar 

  34. Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

    Article  CAS  Google Scholar 

  35. Sugamura, K. et al. The interleukin-2 receptor γ chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu. Rev. Immunol. 14, 179–205 (1996).

    Article  CAS  Google Scholar 

  36. Vander Heiden, M.G., Chandel, N.S., Williamson, E.K., Schumacker, P.T. & Thompson, C.B. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91, 627–637 (1997).

    Article  CAS  Google Scholar 

  37. Boise, L.H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL . Immunity 3, 87–98 (1995).

    Article  CAS  Google Scholar 

  38. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  39. Weber, S., Traunecker, A., Oliveri, F., Gerhard, W. & Karjalainen, K. Specific low-affinity recognition of major histocompatibility complex plus peptide by soluble T-cell receptor. Nature 356, 793–796 (1992).

    Article  CAS  Google Scholar 

  40. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  Google Scholar 

  41. Iezzi, G., Scheidegger, D. & Lanzavecchia, A. Migration and function of antigen primed nonpolarized T lymphocytes in vivo. J. Exp. Med. 193, 987–993 (2001).

    Article  CAS  Google Scholar 

  42. Potsch, C., Vohringer, D. & Pircher, H. Distinct migration patterns of naive and effector CD8 T cells in the spleen: correlation with CCR7 receptor expression and chemokine reactivity. Eur. J. Immunol. 29, 3562–3570 (1999).

    Article  CAS  Google Scholar 

  43. Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  Google Scholar 

  44. Cantrell, D.A. & Smith, K.A. Transient expression of interleukin 2 receptors. Consequences for T cell growth. J. Exp. Med. 158, 1895–1911 (1983).

    Article  CAS  Google Scholar 

  45. Geginat, J., Sallusto, F. & Lanzavecchia, A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. J. Exp. Med. 194, 1711–1719 (2001).

    Article  CAS  Google Scholar 

  46. Hernandez, J., Aung, S., Marquardt, K. & Sherman, L.A. Uncoupling of proliferative potential and gain of effector function by CD8+ T cells responding to self-antigens. J. Exp. Med. 196, 323–333 (2002).

    Article  CAS  Google Scholar 

  47. Gorelik, L. & Flavell, R.A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  Google Scholar 

  48. Lenardo, M. et al. Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999).

    Article  CAS  Google Scholar 

  49. Ferreira, C., Barthlott, T., Garcia, S., Zamoyska, R. & Stockinger, B. Differential survival of naive CD4 and CD8 T cells. J. Immunol. 165, 3689–3694 (2000).

    Article  CAS  Google Scholar 

  50. Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Dellabona for OT-I mice; K. Karjalainen for critical reading and discussion; D. Jarossay for cell sorting; and L. Perlini and G. Bosshard for technical assistance. Supported by the European Community (contract QLK-CT-201-0105), the Swiss National Science Foundation (grant 31-63885) and the Helmut Horten Foundation (to A.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Lanzavecchia or Jens Geginat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gett, A., Sallusto, F., Lanzavecchia, A. et al. T cell fitness determined by signal strength. Nat Immunol 4, 355–360 (2003). https://doi.org/10.1038/ni908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing