Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Hematopoietic stem cells for transplantation

Multiple sources of HSCs exist. Here, Verfaillie discusses the long-term engraftment capabilities of each source and the search for ex vivo expansion conditions to allow bulk culture for therapeutic HSC transplantation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subtle changes in the quality of HSCs throughout development and life.
Figure 2: Stem cell expansion.

References

  1. Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature Med. 2, 1329–1337 (1996).

    CAS  PubMed  Google Scholar 

  2. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95, 952–928 (2000).

    CAS  PubMed  Google Scholar 

  3. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    CAS  PubMed  Google Scholar 

  4. Sutherland, H., Eaves, C., Eaves, A., Dragowska, W. & Landsdorp, P. M. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74, 1563–1570 (1989).

    CAS  PubMed  Google Scholar 

  5. Michallet, M. et al. Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution. Exp. Hematol. 28, 858–870 (2000).

    CAS  PubMed  Google Scholar 

  6. Kawashima, I. et al. CD34+ human marrow cells that express low levels of Kit protein are enriched for long-term marrow-engrafting cells. Blood 87, 4136–4142 (1996).

    CAS  PubMed  Google Scholar 

  7. Ogawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single 34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Google Scholar 

  8. Sato, T., Laver, J. & Ogawa, M. Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94, 2548–5254 (1999).

    CAS  PubMed  Google Scholar 

  9. Ito, T., Tajima, F. & Ogawa, M. Developmental changes of CD34 expression by murine hematopoietic stem cells. Exp. Hematol. 28,1269–1273 (2001).

    Google Scholar 

  10. Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I. & Dick, J. E. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nature Med. 4, 1038–1045 (1998).

    CAS  PubMed  Google Scholar 

  11. Nakamura, Y. et al. Ex vivo generation of CD34+ cells from CD34 hematopoietic cells. Blood. 94, 4053–4059 (1999).

    CAS  PubMed  Google Scholar 

  12. Verfaillie, C. M., Almeida-Porada, G., Wissink, S. & E. D. Zanjani, E. D. Kinetics of engraftment of CD34 and CD34+ cells from mobilized blood differs from that of CD34 and CD34+ cells from bone marrow. Exp. Hematol. 28, 1071–1079 (2000).

    CAS  PubMed  Google Scholar 

  13. Kato, S. et al. Absence of a CD34 hematopoietic precursor population in recipients of CD34+ stem cell transplantation. Bone Marrow Transplant. 28, 587–595 (2001).

    CAS  PubMed  Google Scholar 

  14. Yin, A. H. et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002–5012 (1997).

    CAS  PubMed  Google Scholar 

  15. Goodell, M., Brose, K., Paradis, G., Conner, A. & Mulligan, R. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    CAS  PubMed  Google Scholar 

  16. Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med. 7, 1028–1034 (2001).

    CAS  PubMed  Google Scholar 

  17. Uchida, N., Fujisaki, T., Eaves, A. & Eaves, C. J. Transplantable hematopoietic stem cells in human fetal liver have a CD34+ side population (SP)phenotype. J. Clin. Invest. 108, 1071–1077 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhatia, M., Wang, J., Knapp, U., Bonnet, D. & Dick, J. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl Acad. Sci. USA 94, 5320 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. van der Loo, J. C. et al. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood 92, 2556–2570 (1998).

    CAS  PubMed  Google Scholar 

  20. Szilvassy, S. J. et al. Partially differentiated ex vivo expanded cells accelerate hematologic recovery in myeloablated mice transplanted with highly enriched long-term repopulating stem cells. Blood 88, 3642–3653 (1996).

    CAS  PubMed  Google Scholar 

  21. Muench, M. O., Firpo, M. T. & Moore, M. A. Bone marrow transplantation with interleukin-1 plus kit-ligand ex vivo expanded bone marrow accelerates hematopoietic reconstitution in mice without the loss of stem cell lineage and proliferative potential. Blood 81, 3463–3473 (1993).

    CAS  PubMed  Google Scholar 

  22. Peters, S., Kittler, E., Ramshaw, H. & Quesenberry, P. Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 87, 30–37 (1996).

    CAS  PubMed  Google Scholar 

  23. Ema, H. & Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284–2288 (2000).

    CAS  PubMed  Google Scholar 

  24. Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C. & Eaves, C. J. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl Acad. Sci. USA 87, 8736–8740 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hao, Q. L., Thiemann, F. T., Petersen, D., Smogorzewska, E. M. & Crooks, G. M. Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88, 3306–3313 (1996).

    CAS  PubMed  Google Scholar 

  26. Punzel, M. et al. The myeloid-lymphoid initiating cell (ML-IC) assay assesses the fate of multipotent human progenitors in vitro. Blood 93, 3750–3756 (1999).

    CAS  PubMed  Google Scholar 

  27. Robin, C., Bennaceur-Griscelli, A., Louache, F., Vainchenker, W. & Coulombel, L. Identification of human T-lymphoid progenitor cells in CD34+ CD38low and CD34+ CD38+ subsets of human cord blood and bone marrow cells using NOD-SCID fetal thymus organ cultures. Br. J. Haematol. 104, 809–819 (1999).

    CAS  PubMed  Google Scholar 

  28. Weilbaecher, K., Weissman, I., Blume, K. & Heimfeld, S. Culture of phenotypically defined hematopoietic stem cells and other progenitors at limiting dilution on Dexter monolayers. Blood 78, 945–952 (1991).

    CAS  PubMed  Google Scholar 

  29. Nolta, J. A., Hanley, M. B. & Kohn, D. B. Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 83, 3041–3051 (1994).

    CAS  PubMed  Google Scholar 

  30. Civin, C. et al. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 88, 4102–4109 (1996).

    CAS  PubMed  Google Scholar 

  31. Kollet, O. et al. β2 microglobulin-deficient (B2mnull) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 95, 3102–3105 (2000).

    CAS  PubMed  Google Scholar 

  32. Rosler, E. S., Brandt, J. E., Chute, J. & Hoffman, R. An in vivo competitive repopulation assay for various sources of human hematopoietic stem cells. Blood 96, 3414–3421 (2000).

    CAS  PubMed  Google Scholar 

  33. Glimm, H. et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-β2 microglobulin-null mice. J. Clin. Invest. 107, 199–206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kiem, H. P. et al. Long-term persistence of canine hematopoietic cells genetically marked by retrovirus vectors. Hum. Gene Ther. 7, 89–96 (1996).

    CAS  PubMed  Google Scholar 

  35. Donahue, R. E. & Dunbar, C. E. Update on the use of nonhuman primate models for preclinical testing of gene therapy approaches targeting hematopoietic cells. Hum. Gene Ther. 10, 607–617 (2001).

    Google Scholar 

  36. Rebel, V. I., Miller, C. L., Eaves, C. J. & Lansdorp, P. M. The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood 87, 3500–3507 (1996).

    CAS  PubMed  Google Scholar 

  37. Szilvassy, S. J., Meyerrose, T. E., Ragland, P. L. & Grimes, B. Differential homing and engraftment properties of hematopoietic progenitor cells from murine bone marrow, mobilized peripheral blood, and fetal liver. Blood 98, 2108–2115 (2001).

    CAS  PubMed  Google Scholar 

  38. Sudo, K., Ema, H., Morita, H. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ema, H., Takano, H., Sudo, K. & Nakauchi, H. In vitro self-renewal division of hematopoietic stem cells. J. Exp. Med. 192, 1281–1288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Holyoake, T. L., Nicolini, F. E. & Eaves, C. J. Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp. Hematol. 27, 1418–1427 (1999).

    CAS  PubMed  Google Scholar 

  41. Geiger, H. & Van Zant, G. The aging of lympho-hematopoietic stem cells. Nature Immunol. 3, 329–333 (2002).

    CAS  Google Scholar 

  42. Korbling, M. & Anderlini, P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 98, 2900–2908 (2001).

    CAS  PubMed  Google Scholar 

  43. Prosper, F., Stroncek, D. & Verfaillie, C. M. Phenotypic and functional characterization of long-term culture-initiating cells present in peripheral blood progenitor collections of normal donors treated with granulocyte colony-stimulating factor. Blood 88, 2033–2042 (1996).

    CAS  PubMed  Google Scholar 

  44. Udomsakdi, C. et al. Characterization of primitive hematopoietic cells in normal human peripheral blood. Blood 80, 2513–2522 (1993).

    Google Scholar 

  45. Robertson, J. D. et al. Accelerated telomere shortening following allogeneic transplantation is independent of the cell source and occurs within the first year post transplant. Bone Marrow Transplant. 27, 1283–1286 (2001).

    CAS  PubMed  Google Scholar 

  46. Dunbar, C. E. et al. Improved retroviral gene transfer into murine and Rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor. Proc. Natl Acad. Sci. USA 93, 11871–11876 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fleming, W. H., Alpern, E. J., Uchida, N., Ikuta, K. & Weissman, I. Steel factor influences the distribution and activity of murine hematopoietic stem cells in vivo. Proc. Natl Acad. Sci. USA 90, 3760–3764 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. de Revel, T. et al. Effects of granulocyte colony-stimulating factor and stem cell factor, alone and in combination, on the mobilization of peripheral blood cells that engraft lethally irradiated dogs. Blood 83, 3795–3802 (1994).

    CAS  PubMed  Google Scholar 

  49. Andrews, R. G. et al. Rapid engraftment by peripheral blood progenitor cells mobilized by recombinant human stem cell factor and recombinant human granulocyte colony-stimulating factor in nonhuman primates. Blood 85, 1995–2006 (1995).

    Google Scholar 

  50. Glaspy, J. A. et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood 90, 2939–2951 (1997).

    CAS  PubMed  Google Scholar 

  51. Van Zant, G. et al. Expansion in bioreactors of human progenitor populations from cord blood and mobilized peripheral blood. Blood Cells 20, 482–490 (1994).

    CAS  PubMed  Google Scholar 

  52. Brugger, W., Heimfeld, S., Berenson, R., J., Mertelsmann, R. & Kanz, L. Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. N. Engl. J. Med. 333, 283–287 (1995).

    CAS  PubMed  Google Scholar 

  53. Stiff, P. et al. Autologous transplantation of ex vivo expanded bone marrow cells grown from small aliquots after high-dose chemotherapy for breast cancer. Blood 95, 2169–2174 (2000).

    CAS  PubMed  Google Scholar 

  54. McNiece, I. et al. Ex vivo expanded peripheral blood progenitor cells provide rapid neutrophil recovery after high-dose chemotherapy in patients with breast cancer. Blood 96, 3001–3007 (2000).

    CAS  PubMed  Google Scholar 

  55. Reiffers, J. et al. Abrogation of post-myeloablative chemotherapy neutropenia by ex-vivo expanded autologousCD34-positive cells. Lancet 354, 1092–1093 (1999).

    CAS  PubMed  Google Scholar 

  56. McNiece, I. & Briddell, R. Ex vivo expansion of hematopoietic progenitor cells and mature cells. Exp. Hematol. 29, 3–11 (2001).

    CAS  PubMed  Google Scholar 

  57. McNiece, I. et al. Ex-vivo expansion of hematopoietic progenitor cells: preliminary results in breast cancer. Hematol. Cell Ther. 41, 82–86 (1999).

    CAS  PubMed  Google Scholar 

  58. Bertolini, F. et al. Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. Blood 89, 2679–2688 (1997).

    CAS  PubMed  Google Scholar 

  59. Bomberger, C. et al. Lymphoid reconstitution after autologous PBSC transplantation with FACS-sorted CD34+ hematopoietic progenitors. Blood 91, 2588–2600 (1999).

    Google Scholar 

  60. Holyoake, T. L. et al. CD34 positive PBPC expanded ex vivo may not provide durable engraftment following myeloablative chemoradiotherapy regimens. Bone Marrow Transplant. 19, 1095–1101 (1997).

    CAS  PubMed  Google Scholar 

  61. Gothot, A., Pyatt, R., McMahel, J., Rice, S. & Srour, E. F. Functional heterogeneity of human CD34+ cells isolated in subcompartments of the G0 /G1 phase of the cell cycle. Blood 90, 4384–4393 (1997).

    CAS  PubMed  Google Scholar 

  62. Habibian, H. K. et al. The fluctuating phenotype of the lymphohematopoietic stem cell with cell cycle transit. J. Exp. Med. 188, 393–398 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Giet, O., Huygen, S., Beguin, Y. & Gothot, A. Cell cycle activation of hematopoietic progenitor cells increases very lateantigen-5-mediated adhesion to fibronectin. Exp. Hematol., 29, 515–524 (2001).

    CAS  PubMed  Google Scholar 

  64. Glimm, H., Oh, I. H. & Eaves, C. J. Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not reenter G0 . Blood 96, 4185–4193 (2000).

    CAS  PubMed  Google Scholar 

  65. Orschell-Traycoff, C. M. et al. Homing and engraftment potential of Sca-1+lin cells fractionated on the basis of adhesion molecule expression and position in cell cycle. Blood 96, 1380–1387 (2000).

    CAS  PubMed  Google Scholar 

  66. Takenaka, K. et al. In vitro expansion of hematopoietic progenitor cells induces functional expression of Fas antigen (CD95). Blood 88, 2871–2877 (1996).

    CAS  PubMed  Google Scholar 

  67. Domen, J., Cheshier, S. H. & Weissman, I. L. The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential. J. Exp. Med. 191, 253–264 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, L. S., Liu, H. J., Xia, Z. B., Broxmeyer, H. E. & Lu, L. Expression and activation of caspase-3/CPP32 in CD34+ cord blood cells is linked to apoptosis after growth factor withdrawal. Exp. Hematol. 28, 907–915 (2000).

    CAS  PubMed  Google Scholar 

  69. Ogawa, M. Stochastic model revisited. Int. J. Hematol. 69, 2–5 (1999).

    CAS  PubMed  Google Scholar 

  70. Sauvageau, G. et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev. 9, 1753–1765 (1995).

    CAS  PubMed  Google Scholar 

  71. Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp. Hematol. 29, 1125–1134 (2001).

    CAS  PubMed  Google Scholar 

  72. Ohneda, O. et al. Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92, 908 (1998).

    CAS  PubMed  Google Scholar 

  73. Wineman, J., Moore, K., Lemischka, I. & Muller-Sieburg, C. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87, 4082–4090 (1996).

    CAS  PubMed  Google Scholar 

  74. Collins, L. S. & Dorshkind, K. A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis. J. Immunol. 15, 1082–1087 (1987).

    Google Scholar 

  75. Itoh, K. et al. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp. Hematol. 17, 145–153 (1998).

    Google Scholar 

  76. Lemischka, I. R. Microenvironmental regulation of hematopoietic stem cells. Stem Cells 15, 63–68 (1997).

    PubMed  Google Scholar 

  77. Li, L. et al. The human homologue of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8, 43–55 (1998).

    CAS  PubMed  Google Scholar 

  78. Bhatia, M. et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186, 619–624 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Conneally, E., Cashman, J., Petzer, A. & Eaves, C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc. Natl Acad. Sci. USA 94, 9836 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Piacibello, W. et al. Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34+ cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 93, 3736–3749 (1999).

    CAS  PubMed  Google Scholar 

  81. Kollet, O. et al. The soluble interleukin-6 (IL-6) receptor/IL-6 fusion protein enhances in vitro maintenance and proliferation of human CD34+CD38−/low cells capable of repopulating severe combined immunodeficiency mice. Blood 94, 923–931 (1999).

    CAS  PubMed  Google Scholar 

  82. Tisdale, J. F. et al. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood 92, 1131–1141 (1998).

    CAS  PubMed  Google Scholar 

  83. Dao, M. A., Hashino, K., Kato, I. & Nolta, J. A. Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood 92, 4612–4621 (1998).

    CAS  PubMed  Google Scholar 

  84. Hurley, R. W., McCarthy, J. B. & Verfaillie, C. Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation. J. Clin. Invest. 96, 511–512 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bruno, E., Luikart, S., Long, M. & Hoffman, R. Marrow-derived heparan sulfate proteoglycan mediates the adhesion of hematopoietic progenitor cells to cytokines. Exp. Hematol. 23, 1212–1217 (1995).

    CAS  PubMed  Google Scholar 

  86. Roberts, R. et al. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332, 376 (1988).

  87. Gupta, P. et al. Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. 92, 4641–4651 (1998).

  88. Bhatia, M. et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med. 189, 1139–1148 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dyer, M. A., Farrington, S. M., Mohn, D., Munday, J. R. & Baron, M. H. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 128, 1717–1730 (2001).

    CAS  PubMed  Google Scholar 

  90. Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762 (1998).

    CAS  PubMed  Google Scholar 

  91. Karanu, F. N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med. 192, 1365–1372 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Varnum-Finney, B. et al. The Notch ligand Jagged-1 influences the development of primitive hematopoietic precursor cells. Blood 91, 4084 (1998).

    CAS  PubMed  Google Scholar 

  93. Moore, K., Pytowski, B., Witte, L., Hickling, D. & Lemischka, I. Hematopoietic activity of a stromal cell transmembrane protein containing epidermal growth factor-like repeat motifs. Proc. Natl Acad. Sci. USA 94, 4011 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Phillips, R. L. et al. The genetic program of hematopoietic stem cells. Science 288, 1635–1640 (2000).

    CAS  PubMed  Google Scholar 

  95. Terskikh, A. V. et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc. Natl Acad. Sci. USA 98, 7934–7939 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dorshkind, K. Multilineage development from adult bone marrow cells. Nature Immunol. 3, 311–313 (2002).

    CAS  Google Scholar 

  97. Orkin, S. H. & Zon, L. I. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nature Immunol. 3, 323–328 (2002).

    CAS  Google Scholar 

  98. Bjornson, C., Rietze, R., Reynolds, B., Magli, M. & Vescovi, A. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 354–357 (1999).

    Google Scholar 

  99. Shih, C. C. et al. Identification of a candidate human neurohematopoietic stem-cell population. Blood 98, 2412–2422 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verfaillie, C. Hematopoietic stem cells for transplantation. Nat Immunol 3, 314–317 (2002). https://doi.org/10.1038/ni0402-314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0402-314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing