Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse

Abstract

T cell activation is triggered by several hours of contact with peptide–major histocompatibility (MHC) complexes on the surface of antigen-presenting cells (APCs). The nature and location of the sustained signal transduction pathways required for T cell activation are unknown. We show here that the production of phosphatidylinositol(3,4,5)triphosphate (PIP3) was dynamically sustained for hours as T cells responded to antigen. In addition, sustained elevation of PIP3 was essential for T cell proliferation. There was PIP3 accumulation in the T cell–APC contact zone and at the antipodal pole of the cell. The immune synapse is thus not the sole site of sustained signal transduction in activated T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of mice expressing GFP–PKB-PH.
Figure 2: Distribution of GFP–PKB-PH in resting T cells and translocation in response to PI3K activation.
Figure 3: Localization of GFP–PKB-PH in activated T cells.
Figure 4: Membrane localization of GFP–PKB-PH is sustained in antigen-activated T cells.
Figure 5: Membrane distribution of PKB GFP-PH.
Figure 6: Sustained PI3K activity in antigen-activated T cells.
Figure 7: PI3K requirement for T cell activation.

Similar content being viewed by others

References

  1. Ward, S.G. & Cantrell, D.A. Phosphoinositide 3-kinases in T lymphocyte activation. Curr. Opin. Immunol. 13, 332–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cantrell, D.A. Phosphoinositide 3-kinase signalling pathways. J. Cell Sci. 114, 1439–1445 (2001).

    CAS  PubMed  Google Scholar 

  3. Cantrell, D. Protein kinase B (Akt) regulation and function in T lymphocytes. Semin. Immunol. 14, 19–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Vanhaesebroeck, B. & Alessi, D.R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fruman, D.A. & Cantley, L.C. Phosphoinositide 3-kinase in immunological systems. Semin. Immunol. 14, 7–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Reif, K., Nobes, C.D., Thomas, G., Hall, A. & Cantrell, D.A. Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr. Biol. 6, 1445–1455 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  8. Kane, L.P., Andres, P.G., Howland, K.C., Abbas, A.K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nature Immunol. 2, 37–44 (2001).

    Article  CAS  Google Scholar 

  9. Rathmell, J.C., Farkash, E.A., Gao, W. & Thompson, C.B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Frauwirth, K.A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Burgering, B.M. & Kops, G.J. Cell cycle and death control: long live Forkheads. Trends Biochem. Sci. 27, 352–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Brennan, P. et al. Phosphatidylinositol 3-kinase controls E2F transcriptional activity in response to interleukin-2. Immunity 7, 679–689 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Nunes, J.A., Collette, Y., Truneh, A., Olive, D. & Cantrell, D.A. The role of p21ras in CD28 signal transduction: Triggering of CD28 with antibodies, but not the ligand B7-1 activates p21ras. J. Exp. Med. 180, 1067–1076 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Ward, S.G., Ley, S.C., MacPhee, C. & Cantrell, D.A. Regulation of D-3 phosphoinositides during T cell activation via the T cell antigen receptor/CD3 complex and CD2 antigens. Eur. J. Immunol. 22, 45–49 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Lafont, V., Astoul, E., Laurence, A., Liautard, J. & Cantrell, D. The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Lett. 486, 38–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Delon, J., Bercovici, N., Liblau, R. & Trautmann, A. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol. 28, 716–729 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Delon, J., Bercovici, N., Raposo, G., Liblau, R. & Trautmann, A. Antigen-dependent and -independent Ca2+ responses triggered in T cells by dendritic cells compared with B cells. J. Exp. Med. 188, 1473–1484 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Donnadieu, E. et al. Imaging early steps of human T cell activation by antigen-presenting cells. J. Immunol. 148, 2643–2653 (1992).

    CAS  PubMed  Google Scholar 

  19. Revy, P., Sospedra, M., Barbour, B. & Trautmann, A. Functional antigen-independent synapses formed between T cells and dendritic cells. Nature Immunol. 2, 925–931 (2001).

    Article  CAS  Google Scholar 

  20. Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Meyer, T. & Oancea, E. Studies of signal transduction events using chimeras to green fluorescent protein. Meth. Enzymol. 327, 500–513 (2000).

    Article  CAS  Google Scholar 

  22. Teruel, M.N. & Meyer, T. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103, 181–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Teruel, M.N. & Meyer, T. Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module. Science 295, 1910–1912 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Matthews, S., Iglesias, T., Cantrell, D. & Rozengurt, E. Dynamic re-distribution of protein kinase D (PKD) as revealed by a GFP-PKD fusion protein: dissociation from PKD activation. FEBS Lett. 457, 515–521 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Matthews, S.A., Iglesias, T., Rozengurt, E. & Cantrell, D. Spatial and temporal regulation of protein kinase D (PKD). EMBO J. 19, 2935–2945 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haugh, J.M., Codazzi, F., Teruel, M. & Meyer, T. Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J. Cell Biol. 151, 1269–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marshall, J.G. et al. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fcγ receptor-mediated phagocytosis. J. Cell Biol. 153, 1369–1380 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Astoul, E., Watton, S. & Cantrell, D. The dynamics of protein kinase B regulation during B cell antigen receptor engagement. J. Cell Biol. 145, 1511–1520 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watton, S.J. & Downward, J. Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr. Biol. 9, 433–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 18, 2092–2105 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dustin, M.L. & Cooper, J.A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol. 1, 23–29 (2000).

    Article  CAS  Google Scholar 

  32. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Bromley, S.K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Potter, T.A., Grebe, K., Freiberg, B. & Kupfer, A. Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc. Natl. Acad. Sci. USA 98, 12624–12629 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cantrell, D.A. Transgenic analysis of thymocyte signal transduction. Nature Rev. Immunol. 2, 20–27 (2002).

    Article  CAS  Google Scholar 

  37. Singbartl, K. et al. A CD2-green fluorescence protein-transgenic mouse reveals very late antigen-4-dependent CD8+ lymphocyte rolling in inflamed venules. J. Immunol. 166, 7520–7526 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Mamalaki, C. et al. T cell deletion follows chronic antigen specific T cell activation in vivo. Int. Immunol. 5, 1285–1292 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R.M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Lanzavecchia, A. & Sallusto, F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr. Opin. Immunol. 12, 92–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Lanzavecchia, A. Understanding the mechanisms of sustained signaling and T cell activation. J. Exp. Med. 185, 1717–1719 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  Google Scholar 

  43. Astoul, E., Edmunds, C., Cantrell, D.A. & Ward, S.G. PI 3-K and T-cell activation: limitations of T-leukemic cell lines as signaling models. Trends Immunol. 22, 490–496 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. van Der Merwe, P.A. & Davis, S.J. Immunology. The immunological synapse–a multitasking system. Science 295, 1479–1480 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Ni, H.T., Deeths, M.J. & Mescher, M.F. LFA-1-mediated costimulation of CD8+ T cell proliferation requires phosphatidylinositol 3-kinase activity. J. Immunol. 166, 6523–6529 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Delon, J., Kaibuchi, K. & Germain, R.N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15, 691–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Sperling, A.I. et al. TCR signaling induces selective exclusion of CD43 from the T cell-antigen-presenting cell contact site. J. Immunol. 161, 6459–6462 (1998).

    CAS  PubMed  Google Scholar 

  49. Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15, 715–728 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Zhumabekov, T., Corbella, P., Tolaini, M. & Kioussis, D. Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. J. Immunol. Meth. 185, 133–140 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Rosewell for injection of transgenic constructs; T. Grafton, S. Hoskins, J. Bee and G. Hutchinson for animal care; and P. Jordan, D. Zicha and J. Monypenny for help with confocal microscopy. Supported by the Fondation pour la Recherche Medicale (M. G.) and Cancer Research UK (P. S. C. and D. A. C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen A. Cantrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costello, P., Gallagher, M. & Cantrell, D. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nat Immunol 3, 1082–1089 (2002). https://doi.org/10.1038/ni848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing