Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic cell lineage, plasticity and cross-regulation

Abstract

Dendritic cells (DCs) are professional antigen-presenting cells that have an extraordinary capacity to stimulate naïve T cells and initiate primary immune responses. Here we review progress in understanding the additional functions of DCs in regulating the types of T cell–mediated immune responses and innate immunity to microbes. In addition, evidence for the existence of myeloid and lymphoid DC lineages and their different functions are summarized. We propose that the diverse functions of DCs in immune regulation are dictated by the instructions they received during innate immune responses to different pathogens and from their evolutionary lineage heritage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of T cell–mediated immune responses by DCs.
Figure 2: Two independent DC systems induce T cells to produce IFN-γ in humans.
Figure 3: Negative-feedback regulation via the neuron-endocrine and the immune systems.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Cella, M., Sallusto, F. & Lanzavecchia, A. Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 9, 10–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Reis e Sousa, C., Sher, A. & Kaye, P. The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr. Opin. Immunol. 11, 392–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Moser, M. & Murphy, K. M. Dendritic cell regulation of TH1-TH2 development. Nature Immunol. 1, 199–205 (2001).

    Article  Google Scholar 

  5. Macatonia, S. E. et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 154, 5071–5079 (1995).

    CAS  PubMed  Google Scholar 

  6. Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Koch, F. et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184, 741–746 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Sousa, C. R. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 86, 1819–1829 (1997).

    Article  Google Scholar 

  9. Rissoan, M.-C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA 96, 1036–1041 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maldonado-Lopez, R. et al. CD8α+ and CD8α- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ito, T. et al. Differential regulation of human blood dendritic cell subsets by IFNs. J. Immunol. 166, 2961–2969 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Arpinati, M., Green, C. L. Heimfeld, S. Heuser, J. E. & Anasetti, C. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95, 2484–2490 (2000).

    CAS  PubMed  Google Scholar 

  14. Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today. 20, 561–567 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. med. 193, 233–238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilliet, M. & Liu, Y.-J. Generating IL-10-producing CD8+ T suppressor cells by DC2. Nature Immunol. (submitted, 2001)

  18. Hartmann, G., Weiner, G. J. & Krieg, A. M. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Natl Acad. Sci. USA 96, 9305–9310 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jakob, T. et al. Bacterial DNA and CpG-containing oligodeoxynucleotides activate cutaneous dendritic cells and induce IL-12 production: implications for the augmentation of Th1 responses. Int. Arch. Allergy Immunol. 118, 457–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Sparwasser, T. et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol. 28, 2045–2054 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Jakob, T., Walker, P. S., Krieg, A. M., Udey, M. C. & Vogel, J. C. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J. Immunol. 161, 3042–3049 (1998).

    CAS  PubMed  Google Scholar 

  22. Verdijk, R. M. et al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J. Immunol. 163, 57–61 (1999).

    CAS  PubMed  Google Scholar 

  23. King, C. et al. TGF-β1 alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity 8, 601–613 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Akiba, H. et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J. Exp. Med. 191, 375–380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Delespesse, G., Ohshima, Y., Yang, L. P., Demeure, C. & Sarfati, M. OX40-Mediated cosignal enhances the maturation of naive human CD4+ T cells into high IL-4-producing effectors. Int. Arch. Allergy. Immunol. 118, 384–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Kadowaki, N., Antonenko, S., Lau, J. Y. & Liu, Y. J. Natural interferon α/β-producing cells link innate and adaptive immunity. J. Exp. Med. 192, 219–226 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells activated by influenza virus and CD40 ligand drive a potent TH1 polarization. Nature Immunol. 5, 919–923 (2001).

    Google Scholar 

  28. Tanaka, H., Demeure, C. E., Rubio, M., Delespesse, G. & Sarfati, M. Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J. Exp. Med. 192, 405–412 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalinski, P., Schuitemaker, J. H., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-γ and bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J. Immunol. 162, 3231–3236 (1999).

    CAS  PubMed  Google Scholar 

  30. Reis e Sousa, C. et al. Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity 11, 637–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Langenkamp, A., Messi. M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming TH1, TH2 and nonpolarized T cells. Nature Immunol. 1, 311–316 (2001).

    Article  Google Scholar 

  32. d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pulendran, B., Maraskovsky, E., Banchereau, J. & Maliszewski, C. R. Modulating the immune response with dendritic cells and their growth factors. Trends Immunol. 22, 41–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Hirschfeld, M. et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69, 1477–1482 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Whelan, M. et al. A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J. Immunol. 164, 6453–6460 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Iwasaki, A. & Kelsall, B. L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stumbles, P. A. et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khanna, A. et al. Effects of liver-derived dendritic cell progenitors on Th1- and Th2-like cytokine responses In vitro and in vivo. J. Immunol. 164, 1346–1354 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ardavin, C., Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Bjorck, P. & Kincade, P.W. CD19+ pro-B cells can give rise to dendritic cells in vitro. J. Immunol. 161, 5795–5799 (1998).

    CAS  PubMed  Google Scholar 

  41. Vremec, D. & Shortman, K. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J. Immunol. 159, 565–573 (1997).

    CAS  PubMed  Google Scholar 

  42. Pulendran, B. et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J. Immunol. 159, 2222–2231 (1997).

    CAS  PubMed  Google Scholar 

  43. Kamath, A. T. et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol. 165, 6762–6770 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Shortman, K. Burnet oration: dendritic cells: multiple subtypes, multiple origins, multiple functions. Immunol. Cell. Biol. 78, 161–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Traver, D. et al. Development of CD8α-positive dendritic cells from a common myeloid progenitor. Science 290, 2152–2154 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Brasel, K., De Smedt, T., Smith, J. L. & Maliszewski, C. R. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 96, 3029–3039 (2000).

    CAS  PubMed  Google Scholar 

  47. Lennert, K., Kaiserling, E. & Muller-Hermelink, H. K. T-associated plasma-cells. Lancet 1, 1031–1032 (1975).

    Article  CAS  PubMed  Google Scholar 

  48. Facchetti, F. et al. Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin. Am. J. Pathol. 133, 15–21 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Olweus, J. et al. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc. Natl Acad. Sci. USA 94, 12551–12556 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. O'Doherty, U. et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82, 487–493 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Strobl, H. et al. Identification of CD68+lin- peripheral blood cells with dendritic precursor characteristics. J. Immunol. 161, 740–748 (1998).

    CAS  PubMed  Google Scholar 

  53. Kohrgruber, N. et al. Survival, maturation, and function of CD11c- and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J. Immunol. 163, 3250–3259 (1999).

    CAS  PubMed  Google Scholar 

  54. Sorg, R. V., Kogler, G. & Wernet, P. Identification of cord blood dendritic cells as an immature CD11c population. Blood 93, 2302–2307 (1999).

    CAS  PubMed  Google Scholar 

  55. Res, P. C., Couwenberg, F., Vyth-Dreese, F. A. & Spits, H. Expression of pTα mRNA in a committed dendritic cell precursor in the human thymus. Blood 94, 2647–2657 (1999).

    CAS  PubMed  Google Scholar 

  56. Kadowaki, N. et al. Distinct cytokine profiles of neonatal natural killer T cells after expansion with subsets of dendritic cells. J. Exp. Med. 193, 1213–1220 (2001).

    Article  Google Scholar 

  57. Spits, H., Couwenberg, F., Bakker, A. Q., Weijer, K. & Uittenbogaart, C. H. Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192, 1775–1784 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Romani, N. et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Benlagha, K. & Bendelac, A. CD1d-restricted mouse Vα14 and human Vα24 T cells: lymphocytes of innate immunity. Semin. Immunol. 12, 537–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Lien, E. et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274, 33419–33425 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Hirschfeld, M. et al. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J. Immunol. 163, 2382–2386 (1999).

    CAS  PubMed  Google Scholar 

  63. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285, 736–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–20888 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Dzionek, A. et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165, 6037–6046 (200).

  67. Yamaguchi, Y. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific transmembrane protein: molecular cloning and functional characterization. Keystone Symposium: Dendritic cell: interfaces with immunobiology and medicine. Abstract 361 (2001).

  68. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med. 5, 919–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Fitzgereal-Bocarsly, P. Human natural interferon-α-producing cells. Pharmacol. Ther. 60, 39–62 (1993).

    Article  Google Scholar 

  71. Bjorck, P. Isolation and characterization of murine plasmacytoid dendritic cells. (submitted, 2001).

  72. Asselin-Paturel, C., Briere, F. & Trinchieri G. The IFN-α producing cells in mice are immature CD11clow CD8a-CD11b- dendritic cells. Keystone Sympoium: Dendritic cell: interfaces with immunobiology and medicine. Abstract 304 (2001).

  73. Farrar, J. D. et al. Selective loss of type 1 interferon-induced STAT4 activation caused by a minisatellite insertion in mouse STAT2. Nature Immunol. 1, 65–69 (2000).

    Article  CAS  Google Scholar 

  74. Rogge, L. et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol. 161, 6567–6574 (1998).

    CAS  PubMed  Google Scholar 

  75. Cousens, L. P. et al. Two roads diverged: interferon α/β- and interleukin 12-mediated pathways in promoting T cell interferon γ responses during viral infection. J. Exp. Med. 189, 1315–1328 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cousens, L. P., Orange, J. S., Su, H. C. & Biron, C. A. Interferon-α/β inhibition of interleukin 12 and interferon-γ production in vitro and endogenously during viral infection. Proc. Natl Acad. Sci. USA 94, 634–639 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McRae, B. L., Semnani, R. T., Hayes, M. P. & van Seventer, G. A. Type I IFNs inhibit human dendritic cell IL-12 production and Th1 cell development. J. Immunol. 160, 4298–4304 (1998).

    CAS  PubMed  Google Scholar 

  78. Blanco, P et al. Interferon-α and dendritic cells: novel therapeutic targets in systemic lupus erythematosus. (submitted, 2001).

  79. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Seder, R. A. et al. Factors involved in the differentiation of TGF-β-producing cells from naive CD4+ T cells: IL-4 and IFN-γ have opposing effects, while TGF-β positively regulates its own production. J. Immunol. 160, 5719–5728 (1998).

    CAS  PubMed  Google Scholar 

  81. Kalinski, P. et al. IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype dendritic cells. J. Immunol. 165, 877–881 (2000).

    Article  Google Scholar 

  82. Hochrein, H. et al. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J. Exp. Med. 192, 823–833 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramanathan, S. et al. Recombinant IL-4 aggravates experimental autoimmune uveoretinitis in rats. J. Immunol. 157, 2209–2215 (1996).

    CAS  PubMed  Google Scholar 

  84. Mencacci, A. et al. Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. J. Exp. Med. 187, 307–317 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fort, M. et al. IL-4 exacerbates disease in a TH1 cell transfer model of colitis. J. Immunol. 166, 2793–2800 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Blom, B., Ho, S., Antonenko, S. & Liu, Y. J. Generation of interferon α-producing predendritic cell (Pre-DC)2 from human CD34(+) hematopoietic stem. J. Exp. Med. 192, 1785–1796 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jahnsen, F. L. et al. Experimentally induced recruitment of plasmacytoid (CD123high) dendritic cells in human nasal allergy. J. Immunol. 165, 4062–4068 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YJ., Kanzler, H., Soumelis, V. et al. Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2, 585–589 (2001). https://doi.org/10.1038/89726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/89726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing