Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes

Abstract

To determine whether DNA polymerase η plays a role in the hypermutation of immunoglobulin variable genes, we examined the frequency and pattern of substitutions in variable VH6 genes from the peripheral blood lymphocytes of three patients with xeroderma pigmentosum variant disease, whose polymerase η had genetic defects. The frequency of mutation was normal but the types of base changes were different: there was a decrease in mutations at A and T and a concomitant rise in mutations at G and C. We propose that more than one polymerase contributes to hypermutation and that if one is absent, others compensate. The data indicate that polymerase η is involved in generating errors that occur predominantly at A and T and that another polymerase(s) may preferentially generate errors opposite G and C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymerase η is up-regulated in murine germinal center B cells.
Figure 2: Similar frequency of mutation in VH6-JH genes from XP-V and control subjects.
Figure 3: Similar location of independent mutations in the VH6 gene segment from XP-V and control clones.
Figure 4: Fewer A-T mutations in VH6-JH genes from XP-V patients compared to controls.

Similar content being viewed by others

References

  1. Wood, R. D., Gearhart, P. J. & Neuberger, M. S. Hypermutation in antibody genes. Phil. Trans. R. Soc. Lond. B 356, 1–125 (2001).

    Google Scholar 

  2. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  Google Scholar 

  3. Gearhart, P. J. & Bogenhagen, D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc. Natl Acad. Sci. USA 80, 3439–3443 (1983).

    Article  CAS  Google Scholar 

  4. Betz, A. G. et al. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994).

    Article  CAS  Google Scholar 

  5. Lebecque, S. G. & Gearhart, P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is about 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).

    Article  CAS  Google Scholar 

  6. Smith, D. S. et al. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J. Immunol. 156, 2642–2652 (1996).

    CAS  PubMed  Google Scholar 

  7. Foster, S. J., Dörner, T. & Lipsky, P. E. Targeting and subsequent selection of somatic hypermutations in the human Vκ repertoire. Eur. J. Immunol. 29, 3122–3132 (1999).

    Article  CAS  Google Scholar 

  8. Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochem. Biophys. Acta 1171, 11–18 (1992).

    CAS  PubMed  Google Scholar 

  9. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).

    Article  CAS  Google Scholar 

  10. Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

    Article  CAS  Google Scholar 

  11. Johnson, R.E., Washington, M.T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000).

    Article  CAS  Google Scholar 

  12. Wittschieben, J. et al. Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr. Biol. 10, 1217–1220 (2000).

    Article  CAS  Google Scholar 

  13. Johnson, R. E., Washington, M. T., Prakash, S. & Prakash, L. Fidelity of human DNA polymerase η. J. Biol. Chem. 275, 7447–7450 (2000).

    Article  CAS  Google Scholar 

  14. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase-η. Nature 404, 1011–1013 (2000).

    Article  CAS  Google Scholar 

  15. Masutani, C., Kusumoto, R., Iwai, S. & Hanaoka, F. Mechanisms of accurate translesion synthesis by human DNA polymerase η. EMBO J. 19, 3100–3109 (2000).

    Article  CAS  Google Scholar 

  16. Tissier, A., McDonald, J. P., Frank, E. G. & Woodgate, R. Polι, a remarkably error- prone human DNA polymerase. Genes Dev. 14, 1642–1650 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Domínguez, O. et al. DNA polymerase mu (Pol μ), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J. 19, 1731–1742 (2000).

    Article  Google Scholar 

  18. Aoufouchi, S. et al. Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res. 28, 3684–3693 (2000).

    Article  CAS  Google Scholar 

  19. Sharief, F. S., Vojta, P. J., Ropp, P. A. & Copeland W. C. Cloning and chromosomal mapping of the human DNA polymerase θ (POLQ), the eighth human DNA polymerase. Genomics 59, 90–96 (1999).

    Article  CAS  Google Scholar 

  20. Ohashi, E. et al. Fidelity and processivity of DNA synthesis by DNA polymerase κ, the product of the human DINB1 gene. J. Biol. Chem. 275, 39678–39684 (2000).

    Article  CAS  Google Scholar 

  21. García-Díaz, M. et al. DNA polymerase lambda (Pol λ),, a novel eukaryotic DNA polymerase with a potential role in meiosis. J. Mol. Biol. 301, 851–867 (2000).

    Article  Google Scholar 

  22. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).

    Article  CAS  Google Scholar 

  23. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999).

    Article  CAS  Google Scholar 

  24. Lehmann, A. R. et al. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc. Natl Acad. Sci. USA 72, 219–223 (1975).

    Article  CAS  Google Scholar 

  25. Wang, Y. C., Maher, V. M., Mitchell, D. L. & McCormick, J. J. Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts. Mol. Cell Biol. 13, 4276–4283 (1993).

    Article  CAS  Google Scholar 

  26. Winter, D. B., Phung, Q. H., Wood, R. D. & Gearhart, P. J. Differential expression of DNA polymerase ɛ in resting and activated B lymphocytes is consistent with an in vivo role in replication and not repair. Mol. Immunol. 37, 125–131 (2000).

    Article  CAS  Google Scholar 

  27. Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 9, 859–869 (1998).

    Article  CAS  Google Scholar 

  28. Denepoux, S. et al. Induction of somatic mutation in a human B cell line in vitro. Immunity 6, 35–46 (1997).

    Article  CAS  Google Scholar 

  29. Kraemer, K. H. & Slor, H. Xeroderma pigmentosum. Clin. Dermatol. 3, 33–69 (1985).

    Article  CAS  Google Scholar 

  30. Berth-Jones, J. & Graham-Brown, R. A. C. Xeroderma pigmentosum variant: response to etretinate. Brit. J. Dermatol. 122, 559–561 (1990).

    Article  CAS  Google Scholar 

  31. Sanz, I. et al. The smaller human VH gene families display remarkably little polymorphism. EMBO J. 8, 3741–3748 (1989).

    Article  CAS  Google Scholar 

  32. Corbett, S. J., Tomlinson, I. M., Sonnhammer, E. L. L., Buck, D. & Winter, G. Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J. Mol. Biol. 270, 587–597 (1997).

    Article  CAS  Google Scholar 

  33. Rosner, K. et al. Impact of age on hypermutation of immunoglobulin variable genes in humans. J. Clin. Immunol. 21, 102–115 (2001).

    Article  CAS  Google Scholar 

  34. Johnson, R. E., Prakash, S. & Prakash, L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, polη. Science 283, 1001–1004 (1999).

    Article  CAS  Google Scholar 

  35. Nelson, J. R., Lawrence, C. W. & Hinkle, D. C. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 272, 1646–1649 (1996).

    Article  CAS  Google Scholar 

  36. Yamada, A., Masutani, C., Iwai, S. & Hanaoka, F. Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase η. Nucleic Acids Res. 28, 2473–2480 (2000).

    Article  CAS  Google Scholar 

  37. Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001).

    Article  CAS  Google Scholar 

  38. Brezinschek, H. P., Foster, S. J., Dörner, T., Brezinschek, R. I. & Lipsky, P. E. Pairing of variable heavy and variable κ chains in individual naive and memory B cells. J. Immunol. 160, 4762–4767 (1998).

    CAS  PubMed  Google Scholar 

  39. Rosner, K. et al. Third complementarity-determining region of mutated VH immunoglobulin genes contains shorter V, D, J., P, and N components than nonmutated genes. Immunology 103, (in the press, 2001).

  40. Winter, D. B. et al. Altered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2. Proc. Natl Acad. Sci. USA 95, 6953–6958 (1998).

    Article  CAS  Google Scholar 

  41. Goodman, M. F. & Tippin, B. The expanding polymerase universe. Nature Rev. Mol. Cell Biol. 1, 101–109 (2000).

    Article  CAS  Google Scholar 

  42. Spencer, J., Dunn, M. & Dunn-Walters, D. K. Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. J. Immunol. 162, 6596–6601 (1999).

    CAS  PubMed  Google Scholar 

  43. Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Correlation between hotspots for somatic mutation in immunoglobulin genes and DNA synthesis errors by DNA polymerase η. Nature Immunol. 2, 530–536 (2001).

    Article  CAS  Google Scholar 

  44. Phung, Q. H. et al. Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein. J. Exp. Med. 187, 1745–1751 (1998).

    Article  CAS  Google Scholar 

  45. Wiesendanger, M., Kneitz, B., Edelmann, W. & Scharff, M. D. Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2-MSH6 heterodimer in modulating the base substitution pattern. J. Exp. Med. 191, 579–584 (2000).

    Article  CAS  Google Scholar 

  46. Kim, N., Bozet, G., Lo, J.C. & Storb, U. Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. J. Exp. Med. 190, 21–30 (1999).

    Article  CAS  Google Scholar 

  47. Pâques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Micro. Mol. Biol. Rev. 63, 349–404 (1999).

    Google Scholar 

  48. Frank, E. G. et al. Altered nucleotide misinsertion fidelity associated with polι-dependent replication at the end of a DNA template. EMBO J. 20 (in the press, 2001).

  49. Tissier, A. et al. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase ι. EMBO J. 19, 5259–5266 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Tarone for statistical analyses, B. C. Broughton for the sequence analysis of the mutations in polymerase η in XP7BR and XP11BR, C. F. Arlett for the blood samples of XP7BR and XP11BR and F. Hanoaka for supplying intron information for murine polymerase η. We also thank R. Wood, K. Rosner and V. Bohr for critical comments and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia J. Gearhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Winter, D., Kasmer, C. et al. DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat Immunol 2, 537–541 (2001). https://doi.org/10.1038/88740

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing