Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IL-17+ γδ T cells as kick-starters of inflammation

Abstract

Shortly after the discovery of interleukin 17 (IL-17)-producing CD4+ helper T cells (TH17 cells), it was found that γδ T cells can also secrete large amounts of this pro-inflammatory cytokine. A decade later, it is now known that IL-17+ γδ T cells (γδ17 T cells) are often the main providers of IL-17A in various models of inflammatory diseases, while they also contribute to protective immune responses to infectious organisms. Due to an intricate thymic program of differentiation, γδ17 T cells are able to respond faster than TH17 cells do and thus predominate in the early stages of inflammatory responses. Here we review the current knowledge of the development, activation and pathophysiological functions of γδ17 T cells, aiming to increase the awareness in the community of the therapeutic potential of this 'other side' of IL-17-mediated immune responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thymic programming and peripheral maintenance of γδ T cell subsets.
Figure 2: Activation and propagation of pro-inflammatory γδ17 T cell responses.

Similar content being viewed by others

References

  1. Veldhoen, M. Interleukin 17 is a chief orchestrator of immunity. Nat. Immunol. 18, 612–621 (2017).

    CAS  PubMed  Google Scholar 

  2. Isailovic, N., Daigo, K., Mantovani, A. & Selmi, C. Interleukin-17 and innate immunity in infections and chronic inflammation. J. Autoimmun. 60, 1–11 (2015).

    CAS  PubMed  Google Scholar 

  3. Burkett, P.R., Meyer zu Horste, G. & Kuchroo, V.K. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J. Clin. Invest. 125, 2211–2219 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Qian, X. et al. Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine 89, 34–44 (2017).

    CAS  PubMed  Google Scholar 

  5. Silva-Santos, B., Serre, K. & Norell, H. γδ T cells in cancer. Nat. Rev. Immunol. 15, 683–691 (2015).

    CAS  PubMed  Google Scholar 

  6. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  9. Cua, D.J. & Tato, C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    CAS  PubMed  Google Scholar 

  10. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Muñoz-Ruiz, M., Sumaria, N., Pennington, D.J. & Silva-Santos, B. Thymic determinants of γδ T cell differentiation. Trends. Immunol. http://dx.doi.org/10.1016/j.it.2017.01.007 (2017).

  12. Ribot, J.C. et al. CD27 is a thymic determinant of the balance between interferon-γ- and interleukin 17-producing γδ T cell subsets. Nat. Immunol. 10, 427–436 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Haas, J.D. et al. CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing γδ effector T cells. Eur. J. Immunol. 39, 3488–3497 (2009).

    CAS  PubMed  Google Scholar 

  14. Jensen, K.D. et al. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. Immunity 29, 90–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carding, S.R. & Egan, P.J. γδ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345 (2002).

    CAS  PubMed  Google Scholar 

  16. O'Brien, R.L. & Born, W.K. γδ T cell subsets: a link between TCR and function? Semin. Immunol. 22, 193–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Romani, L. et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451, 211–215 (2008).

    CAS  PubMed  Google Scholar 

  18. Heilig, J.S. & Tonegawa, S. Diversity of murine γ genes and expression in fetal and adult T lymphocytes. Nature 322, 836–840 (1986).

    CAS  PubMed  Google Scholar 

  19. Narayan, K. et al. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Nat. Immunol. 13, 511–518 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Malhotra, N. et al. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 38, 681–693 (2013).

    CAS  PubMed  Google Scholar 

  21. Laird, R.M., Laky, K. & Hayes, S.M. Unexpected role for the B cell-specific Src family kinase B lymphoid kinase in the development of IL-17-producing γδ T cells. J. Immunol. 185, 6518–6527 (2010).

    CAS  PubMed  Google Scholar 

  22. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+Foxp3+RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmolka, N. et al. Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory γδ T cell subsets. Nat. Immunol. 14, 1093–1100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Barros-Martins, J. et al. Effector γδ T cell differentiation relies on master but not auxiliary Th cell transcription factors. J. Immunol. 196, 3642–3652 (2016).

    CAS  PubMed  Google Scholar 

  25. Serre, K. & Silva-Santos, B. Molecular mechanisms of differentiation of murine pro-inflammatory γδ T cell subsets. Front. Immunol. 4, 431 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Schmolka, N., Wencker, M., Hayday, A.C. & Silva-Santos, B. Epigenetic and transcriptional regulation of γδ T cell differentiation: Programming cells for responses in time and space. Semin. Immunol. 27, 19–25 (2015).

    CAS  PubMed  Google Scholar 

  27. Haas, J.D. et al. Development of interleukin-17-producing γδ T cells is restricted to a functional embryonic wave. Immunity 37, 48–59 (2012).

    CAS  PubMed  Google Scholar 

  28. Chien, Y.H., Zeng, X. & Prinz, I. The natural and the inducible: interleukin (IL)-17-producing γδ T cells. Trends Immunol. 34, 151–154 (2013).

    CAS  PubMed  Google Scholar 

  29. Mair, F. et al. The NFκB-inducing kinase is essential for the developmental programming of skin-resident and IL-17-producing γδ T cells. eLife 4, e10087 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Nitta, T. et al. The thymic cortical epithelium determines the TCR repertoire of IL-17-producing γδT cells. EMBO Rep. 16, 638–653 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Muñoz-Ruiz, M. et al. TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets. Nat. Immunol. 17, 721–727 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Do, J.S. et al. Cutting edge: spontaneous development of IL-17-producing γδ T cells in the thymus occurs via a TGF-β1-dependent mechanism. J. Immunol. 184, 1675–1679 (2010).

    CAS  PubMed  Google Scholar 

  33. Michel, M.L. et al. Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing γδ cells. Proc. Natl. Acad. Sci. USA 109, 17549–17554 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakamura, M. et al. A genome-wide analysis identifies a notch-RBP-Jκ-IL-7Rα axis that controls IL-17-producing γδ T cell homeostasis in mice. J. Immunol. 194, 243–251 (2015).

    CAS  PubMed  Google Scholar 

  35. Fujikado, N. et al. Aire inhibits the generation of a perinatal population of interleukin-17A-Producing γδ T cells to promote immunologic tolerance. Immunity 45, 999–1012 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Colpitts, S.L., Puddington, L. & Lefrançois, L. IL-15 receptor α signaling constrains the development of IL-17-producing γδ T cells. Proc. Natl. Acad. Sci. USA 112, 9692–9697 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kashani, E. et al. A clonotypic Vγ4Jγ1/Vδ5Dδ2Jδ1 innate γδ T-cell population restricted to the CCR6+CD27 subset. Nat. Commun. 6, 6477 (2015).

    CAS  PubMed  Google Scholar 

  38. Zeng, X. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity 37, 524–534 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ribot, J.C., Ribeiro, S.T., Correia, D.V., Sousa, A.E. & Silva-Santos, B. Human γδ thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. J. Immunol. 192, 2237–2243 (2014).

    CAS  PubMed  Google Scholar 

  40. Caccamo, N. et al. Differentiation, phenotype, and function of interleukin-17-producing human Vγ9Vδ2 T cells. Blood 118, 129–138 (2011).

    CAS  PubMed  Google Scholar 

  41. Moens, E. et al. IL-23R and TCR signaling drives the generation of neonatal Vγ9Vδ2 T cells expressing high levels of cytotoxic mediators and producing IFN-γ and IL-17. J. Leukoc. Biol. 89, 743–752 (2011).

    CAS  PubMed  Google Scholar 

  42. Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  43. Martin, B., Hirota, K., Cua, D.J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    CAS  PubMed  Google Scholar 

  44. Ribot, J.C. et al. Cutting edge: adaptive versus innate receptor signals selectively control the pool sizes of murine IFN-γ- or IL-17-producing γδ T cells upon infection. J. Immunol. 185, 6421–6425 (2010).

    CAS  PubMed  Google Scholar 

  45. Li, F. et al. The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat. Commun. 7, 13839 (2017).

    PubMed  Google Scholar 

  46. Reynolds, J.M., Martinez, G.J., Chung, Y. & Dong, C. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc. Natl. Acad. Sci. USA 109, 13064–13069 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sheridan, B.S. et al. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39, 184–195 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rei, M. et al. Murine CD27Vγ6+ γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc. Natl. Acad. Sci. USA 111, E3562–E3570 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wencker, M. et al. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat. Immunol. 15, 80–87 (2014).

    CAS  PubMed  Google Scholar 

  50. Ribot, J.C., Debarros, A., Mancio-Silva, L., Pamplona, A. & Silva-Santos, B. B7-CD28 costimulatory signals control the survival and proliferation of murine and human γδ T cells via IL-2 production. J. Immunol. 189, 1202–1208 (2012).

    CAS  PubMed  Google Scholar 

  51. Bekiaris, V., Sedý, J.R., Macauley, M.G., Rhode-Kurnow, A. & Ware, C.F. The inhibitory receptor BTLA controls γδ T cell homeostasis and inflammatory responses. Immunity 39, 1082–1094 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Imai, Y. et al. Cutting edge: PD-1 regulates imiquimod-induced psoriasiform dermatitis through inhibition of IL-17A expression by innate γδ-low T cells. J. Immunol. 195, 421–425 (2015).

    CAS  PubMed  Google Scholar 

  53. Sumaria, N. et al. Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J. Exp. Med. 208, 505–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hamada, S. et al. IL-17A produced by γδ T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. J. Immunol. 181, 3456–3463 (2008).

    CAS  PubMed  Google Scholar 

  55. Romagnoli, P.A., Sheridan, B.S., Pham, Q.M., Lefrançois, L. & Khanna, K.M. IL-17A-producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. Proc. Natl. Acad. Sci. USA 113, 8502–8507 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ono, T. et al. IL-17-producing γδ T cells enhance bone regeneration. Nat. Commun. 7, 10928 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lockhart, E., Green, A.M. & Flynn, J.L. IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol. 177, 4662–4669 (2006).

    CAS  PubMed  Google Scholar 

  58. Peng, M.Y. et al. Interleukin 17-producing γδ T cells increased in patients with active pulmonary tuberculosis. Cell. Mol. Immunol. 5, 203–208 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. Shibata, K., Yamada, H., Hara, H., Kishihara, K. & Yoshikai, Y. Resident Vδ1+ γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178, 4466–4472 (2007).

    CAS  PubMed  Google Scholar 

  60. Conti, H.R. et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J. Exp. Med. 211, 2075–2084 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Misiak, A., Wilk, M.M., Raverdeau, M. & Mills, K.H. IL-17-producing innate and pathogen-specific tissue resident memory γδ T cells expand in the lungs of Bordetella pertussis-infected mice. J. Immunol. 198, 363–374 (2017).

    CAS  PubMed  Google Scholar 

  62. Okamoto Yoshida, Y. et al. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J. Immunol. 184, 4414–4422 (2010).

    CAS  PubMed  Google Scholar 

  63. Murphy, A.G. et al. Staphylococcus aureus infection of mice expands a population of memory γδ T cells that are protective against subsequent infection. J. Immunol. 192, 3697–3708 (2014).

    CAS  PubMed  Google Scholar 

  64. Silva-Santos, B. γδ cells making IL-17. Blood 118, 3–5 (2011).

    CAS  PubMed  Google Scholar 

  65. Roark, C.L. et al. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing γδ T cells. J. Immunol. 179, 5576–5583 (2007).

    CAS  PubMed  Google Scholar 

  66. Park, S.G. et al. T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells. Immunity 33, 791–803 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cui, Y. et al. Major role of γδ T cells in the generation of IL-17+ uveitogenic T cells. J. Immunol. 183, 560–567 (2009).

    CAS  PubMed  Google Scholar 

  68. Markle, J.G. et al. γδ T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. J. Immunol. 190, 5392–5401 (2013).

    CAS  PubMed  Google Scholar 

  69. Emamaullee, J.A. et al. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 58, 1302–1311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, L. γδ T cell receptors confer autonomous responsiveness to the insulin-peptide B:9-23. J. Autoimmun. 34, 478–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002).

    CAS  PubMed  Google Scholar 

  72. Hayday, A.C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    CAS  PubMed  Google Scholar 

  73. O'Brien, R.L. & Born, W.K. Dermal γδ T cells--What have we learned? Cell. Immunol. 296, 62–69 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cai, Y. et al. Differential developmental requirement and peripheral regulation for dermal Vγ4 and Vγ6T17 cells in health and inflammation. Nat. Commun. 5, 3986 (2014).

    CAS  PubMed  Google Scholar 

  75. Gray, E.E., Suzuki, K. & Cyster, J.G. Cutting edge: Identification of a motile IL-17-producing γδ T cell population in the dermis. J. Immunol. 186, 6091–6095 (2011).

    CAS  PubMed  Google Scholar 

  76. Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pantelyushin, S. et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hartwig, T., Pantelyushin, S., Croxford, A.L., Kulig, P. & Becher, B. Dermal IL-17-producing γδ T cells establish long-lived memory in the skin. Eur. J. Immunol. 45, 3022–3033 (2015).

    CAS  PubMed  Google Scholar 

  79. Ramírez-Valle, F., Gray, E.E. & Cyster, J.G. Inflammation induces dermal Vγ4+ γδT17 memory-like cells that travel to distant skin and accelerate secondary IL-17-driven responses. Proc. Natl. Acad. Sci. USA 112, 8046–8051 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Gray, E.E. et al. Deficiency in IL-17-committed Vγ4+ γδ T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14, 584–592 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shibata, S. et al. Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 production from γδ-T cells. Nat. Commun. 6, 7687 (2015).

    CAS  PubMed  Google Scholar 

  82. Kulig, P. et al. IL-12 protects from psoriasiform skin inflammation. Nat. Commun. 7, 13466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cibrian, D. et al. CD69 controls the uptake of l-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat. Immunol. 17, 985–996 (2016).

    CAS  PubMed  Google Scholar 

  84. Laggner, U. et al. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis. J. Immunol. 187, 2783–2793 (2011).

    CAS  PubMed  Google Scholar 

  85. Malik, S., Want, M.Y. & Awasthi, A. The emerging roles of γδ T cells in tissue inflammation in experimental autoimmune encephalomyelitis. Front. Immunol. 7, 14 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rajan, A.J., Gao, Y.L., Raine, C.S. & Brosnan, C.F. A pathogenic role for γδ T cells in relapsing-remitting experimental allergic encephalomyelitis in the SJL mouse. J. Immunol. 157, 941–949 (1996).

    CAS  PubMed  Google Scholar 

  88. Blink, S.E. et al. γδ T cell subsets play opposing roles in regulating experimental autoimmune encephalomyelitis. Cell. Immunol. 290, 39–51 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lalor, S.J. et al. Caspase-1-processed cytokines IL-1β and IL-18 promote IL-17 production by γδ and CD4 T cells that mediate autoimmunity. J. Immunol. 186, 5738–5748 (2011).

    CAS  PubMed  Google Scholar 

  90. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  PubMed  Google Scholar 

  91. Sutton, C., Brereton, C., Keogh, B., Mills, K.H. & Lavelle, E.C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gris, D. et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 185, 974–981 (2010).

    CAS  PubMed  Google Scholar 

  93. Petermann, F. γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33, 351–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    CAS  PubMed  Google Scholar 

  96. Pikor, N.B. et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).

    CAS  PubMed  Google Scholar 

  97. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pikor, N.B., Prat, A., Bar-Or, A. & Gommerman, J.L. Meningeal tertiary lymphoid tissues and multiple sclerosis: a gathering place for diverse types of immune cells during cns autoimmunity. Front. Immunol. 6, 657 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Wucherpfennig, K.W. et al. γδ T-cell receptor repertoire in acute multiple sclerosis lesions. Proc. Natl. Acad. Sci. USA 89, 4588–4592 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hvas, J., Oksenberg, J.R., Fernando, R., Steinman, L. & Bernard, C.C. γδ T cell receptor repertoire in brain lesions of patients with multiple sclerosis. J. Neuroimmunol. 46, 225–234 (1993).

    CAS  PubMed  Google Scholar 

  101. Schirmer, L., Rothhammer, V., Hemmer, B. & Korn, T. Enriched CD161high CCR6+ γδ T cells in the cerebrospinal fluid of patients with multiple sclerosis. JAMA Neurol. 70, 345–351 (2013).

    PubMed  Google Scholar 

  102. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing γδ T cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    CAS  PubMed  Google Scholar 

  103. Gelderblom, M. et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 120, 3793–3802 (2012).

    CAS  PubMed  Google Scholar 

  104. Adamski, M.G. et al. Pre-existing hypertension dominates γδT cell reduction in human ischemic stroke. PLoS One 9, e97755 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22, 516–523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, J.M., Jiang, G.X., Li, Q.W., Zhou, Z.M. & Cheng, Q. Increased serum levels of interleukin-18, -23 and -17 in Chinese patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 38, 321–329 (2014).

    CAS  PubMed  Google Scholar 

  107. Zhang, J., Ke, K.F., Liu, Z., Qiu, Y.H. & Peng, Y.P. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of aβ1-42-induced Alzheimer's disease model rats. PLoS One 8, e75786 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Boismenu, R., Feng, L., Xia, Y.Y., Chang, J.C. & Havran, W.L. Chemokine expression by intraepithelial γδ T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J. Immunol. 157, 985–992 (1996).

    CAS  PubMed  Google Scholar 

  109. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    CAS  PubMed  Google Scholar 

  110. Mielke, L.A. et al. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210, 1117–1124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fay, N.S., Larson, E.C. & Jameson, J.M. Chronic Inflammation and γδ T Cells. Front. Immunol. 7, 210 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Lee, J.S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Akitsu, A. et al. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2+Vγ6+γδ T cells. Nat. Commun. 6, 7464 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the European Research Council (CoG_646701 to B.S.-S.) and Fundação para a Ciência e Tecnologia (PD/BD/105855/2014 to P.H.P.; IF/00013/2014 to J.C.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Silva-Santos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papotto, P., Ribot, J. & Silva-Santos, B. IL-17+ γδ T cells as kick-starters of inflammation. Nat Immunol 18, 604–611 (2017). https://doi.org/10.1038/ni.3726

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing