Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations

Abstract

Effective clinical cancer immunotherapies, such as administration of the cytokine IL-2, adoptive cell transfer (ACT) and the recent success of blockade of the checkpoint modulators CTLA-4 and PD-1, have been developed without clear identification of the immunogenic targets expressed by human cancers in vivo. Immunotherapy of patients with cancer through the use of ACT with autologous lymphocytes has provided an opportunity to directly investigate the antigen recognition of lymphocytes that mediate cancer regression in humans. High-throughput immunological testing of such lymphocytes in combination with improvements in deep sequencing of the autologous cancer have provided new insight into the molecular characterization and incidence of anti-tumor lymphocytes present in patients with cancer. Here we highlight evidence suggesting that T cells that target tumor neoantigens arising from cancer mutations are the main mediators of many effective cancer immunotherapies in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of neoantigen-reactive T cells from patients with cancer.

Similar content being viewed by others

References

  1. Robbins, P.F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Kerkar, S.P. et al. MAGE-A is more highly expressed than NY-ESO-1 in a systematic immunohistochemical analysis of 3668 cases. J. Immunother. 39, 181–187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morgan, R.A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Linette, G.P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnson, L.A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kochenderfer, J.N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brentjens, R.J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porter, D.L., Levine, B.L., Kalos, M., Bagg, A. & June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, D.W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Kochenderfer, J.N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Turtle, C.J. et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Parkhurst, M.R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberg, S.A., Yang, J.C. & Restifo, N.P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schiller, J.T. & Lowy, D.R. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat. Rev. Microbiol. 10, 681–692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Vos van Steenwijk, P.J. et al. The long-term immune response after HPV16 peptide vaccination in women with low-grade pre-malignant disorders of the uterine cervix: a placebo-controlled phase II study. Cancer Immunol. Immunother. 63, 147–160 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Stevanović, S. et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. 33, 1543–1550 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Plaen, E. et al. Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum- mutation. Proc. Natl. Acad. Sci. USA 85, 2274–2278 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sibille, C. et al. Structure of the gene of tum- transplantation antigen P198: a point mutation generates a new antigenic peptide. J. Exp. Med. 172, 35–45 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Van Pel, A. et al. Tum- antigens, TSTA, and T cell immune surveillance. Ann. NY Acad. Sci. 636, 43–51 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Monach, P.A., Meredith, S.C., Siegel, C.T. & Schreiber, H. A unique tumor antigen produced by a single amino acid substitution. Immunity 2, 45–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Dubey, P. et al. The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J. Exp. Med. 185, 695–705 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beck-Engeser, G.B. et al. Point mutation in essential genes with loss or mutation of the second allele: relevance to the retention of tumor-specific antigens. J. Exp. Med. 194, 285–300 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castle, J.C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72, 1081–1091 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gubin, M.M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Motzer, R.J. et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J. Clin. Oncol. 33, 1430–1437 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Motzer, R.J. et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nghiem, P.T. et al. PD-1 blockade with Pembrolizumab in advanced Merkel-cell carcinoma. N. Engl. J. Med. 374, 2542–2552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Topalian, S.L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Rooij, N. et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31, e439–e442 (2013).

    Article  PubMed  Google Scholar 

  33. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Allen, E.M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rizvi, N.A. et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 16, 257–265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rizvi, N.A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Le, D.T. et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rosenberg, S.A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goff, S.L. et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J. Clin. Oncol. 34, 2389–2397 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Robbins, P.F. et al. A mutated β-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med. 183, 1185–1192 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, J. et al. T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product. J. Immunol. 172, 6057–6064 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, J., Dudley, M.E., Rosenberg, S.A. & Robbins, P.F. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J. Immunother. 28, 53–62 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lu, Y.C. et al. Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression. J. Immunol. 190, 6034–6042 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Robbins, P.F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prickett, T.D. et al. Durable complete response from metastatic melanoma after transfer of autologous T cells recognizing 10 mutated tumor antigens. Cancer Immunol. Res. 4, 669–678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Rodenko, B. et al. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat. Protoc. 1, 1120–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Cohen, C.J. et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J. Clin. Invest. 125, 3981–3991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kalaora, S. et al. Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. Oncotarget 7, 5110–5117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lu, Y.C. et al. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin. Cancer Res. 20, 3401–3410 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parkhurst, M.R. et al. Isolation of T cell receptors reactive with tumor neoantigens from tumor infiltrating lymphocytes based on CD137 expression. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.CCR-16-2680 (8 November 2016).

  56. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hogan, K.T. et al. The peptide recognized by HLA-A68.2-restricted, squamous cell carcinoma of the lung-specific cytotoxic T lymphocytes is derived from a mutated elongation factor 2 gene. Cancer Res. 58, 5144–5150 (1998).

    CAS  PubMed  Google Scholar 

  58. Karanikas, V. et al. High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival. Cancer Res. 61, 3718–3724 (2001).

    CAS  PubMed  Google Scholar 

  59. Echchakir, H. et al. A point mutation in the α-actinin-4 gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human lung carcinoma. Cancer Res. 61, 4078–4083 (2001).

    CAS  PubMed  Google Scholar 

  60. Takenoyama, M. et al. A point mutation in the NFYC gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human squamous cell lung carcinoma. Int. J. Cancer 118, 1992–1997 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Guéguen, M. et al. An antigen recognized by autologous CTLs on a human bladder carcinoma. J. Immunol. 160, 6188–6194 (1998).

    PubMed  Google Scholar 

  62. Mandruzzato, S., Brasseur, F., Andry, G., Boon, T. & van der Bruggen, P. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J. Exp. Med. 186, 785–793 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ito, D. et al. Immunological characterization of missense mutations occurring within cytotoxic T cell-defined p53 epitopes in HLA-A*0201+ squamous cell carcinomas of the head and neck. Int. J. Cancer 120, 2618–2624 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Wick, D.A. et al. Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancer. Clin. Cancer Res. 20, 1125–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Gjertsen, M.K., Bjorheim, J., Saeterdal, I., Myklebust, J. & Gaudernack, G. Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int. J. Cancer 72, 784–790 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Kloor, M. & Doeberitz, M.K. The immune biology of microsatellite-unstable cancer. Trends in Cancer 2, 121–133 (2016).

    Article  PubMed  Google Scholar 

  67. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tran, E. et al. T-cell transfer therapy targeting mutated KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gattinoni, L., Klebanoff, C.A. & Restifo, N.P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crompton, J.G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Macintyre, A.N. et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34, 224–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, Y., Bleakley, M. & Yee, C. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J. Immunol. 175, 2261–2269 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Vizcardo, R. et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell 12, 31–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Beane, J.D. et al. Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in Tumor infiltrating lymphocytes for the treatment of metastatic melanoma. Mol. Ther. 23, 1380–1390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carreno, B.M. et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Coulie, P.G. et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc. Natl. Acad. Sci. USA 92, 7976–7980 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A Rosenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, E., Robbins, P. & Rosenberg, S. 'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 18, 255–262 (2017). https://doi.org/10.1038/ni.3682

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3682

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer