Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A vision and a prescription for big data–enabled medicine

Subjects

Genetic, environmental and socioeconomic factors render humanity remarkably diverse. '-Omic' and sensor technologies permit the capture of this diversity with unprecedented precision. Leveraging these technologies in clinical decision making will help to bring about the long-heralded personalization of medicine.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capturing individual variation with the help of mobile-sensor and molecular-profiling technologies in the era of big data–enabled medicine.
Figure 2: Windows of opportunity afforded by high-resolution proximity testing.

References

  1. Medawar, P. in The Reith Lectures (BBC Radio 4, 1959).

    Google Scholar 

  2. Pulendran, B. Proc. Natl. Acad. Sci. USA 111, 12300–12306 (2014).

    Article  CAS  Google Scholar 

  3. Chatterjee, B. & Pancholi, J. Ayu 32, 141–146 (2011).

    Article  Google Scholar 

  4. Bennett, L. et al. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  Google Scholar 

  5. Griffiths, M.J. et al. J. Infect. Dis. 191, 1599–1611 (2005).

    Article  CAS  Google Scholar 

  6. Mejias, A. et al. PLoS Med. 10, e1001549 (2013).

    Article  Google Scholar 

  7. Moal, V. et al. J. Infect. Dis. 207, 125–132 (2013).

    Article  CAS  Google Scholar 

  8. Mostafavi, S. et al. Mol. Psychiatry 19, 1267–1274 (2014).

    Article  CAS  Google Scholar 

  9. Smih, F. et al. PLoS ONE 6, e20414 (2011).

    Article  CAS  Google Scholar 

  10. Stamova, B. et al. Stroke 41, 2171–2177 (2010).

    Article  Google Scholar 

  11. Li, S. et al. Nat. Immunol. 15, 195–204 (2014).

    Article  Google Scholar 

  12. Obermoser, G. et al. Immunity 38, 831–844 (2013).

    Article  CAS  Google Scholar 

  13. Gaucher, D. et al. J. Exp. Med. 205, 3119–3131 (2008).

    Article  CAS  Google Scholar 

  14. Querec, T.D. et al. Nat. Immunol. 10, 116–125 (2009).

    Article  CAS  Google Scholar 

  15. Oswald, M. et al. Arthritis Rheumatol. 67, 344–351 (2014).

    Article  Google Scholar 

  16. Hecker, M. et al. Mol. Neurobiol. 48, 737–756 (2013).

    Article  CAS  Google Scholar 

  17. Novershtern, N. et al. Cell 144, 296–309 (2011).

    Article  CAS  Google Scholar 

  18. Pascual, V. et al. Immunol. Rev. 223, 39–59 (2008).

    Article  CAS  Google Scholar 

  19. Panelli, M.C. et al. Genome Biol. 3, research0035.1–research0035.17 (2002).

    Article  Google Scholar 

  20. Berry, M.P. et al. Nature 466, 973–977 (2010).

    Article  CAS  Google Scholar 

  21. Martínez-Llordella, M. et al. J. Clin. Invest. 118, 2845–2857 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Newell, K.A. et al. J. Clin. Invest. 120, 1836–1847 (2010).

    Article  CAS  Google Scholar 

  23. Chiche, L. et al. Arthritis Rheumatol. 66, 1583–1595 (2014).

    Article  CAS  Google Scholar 

  24. Brenner, S. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 207–212 (2010).

    Article  Google Scholar 

  25. Ertin, E. et al. in Proc. 9th Int. Conf. Embedded Networked Sensor Systems (SenSys) (ACM, 2011).

    Google Scholar 

  26. Rahman, T. et al. in Proc. Int. Conf. Mobile Systems, Applications, Services (MobiSys) (ACM, 2014).

    Google Scholar 

  27. Nikzad, N. et al. in Proc. Conf. Wireless Health (WH '12) (ACM, 2012).

    Google Scholar 

  28. Chaussabel, D. & Baldwin, N. Nat. Rev. Immunol. 14, 271–280 (2014).

    Article  CAS  Google Scholar 

  29. Kaizer, E.C. et al. J. Clin. Endocrinol. Metab. 92, 3705–3711 (2007).

    Article  CAS  Google Scholar 

  30. Woods, C.W. et al. PLoS ONE 8, e52198 (2013).

    Article  CAS  Google Scholar 

  31. Lukaszewski, R.A. et al. Clin. Vaccine Immunol. 15, 1089–1094 (2008).

    Article  CAS  Google Scholar 

  32. Kallionpää, H. et al. Diabetes 63, 2402–2414 (2014).

    Article  Google Scholar 

  33. Ockenhouse, C.F. et al. Infect. Immun. 74, 5561–5573 (2006).

    Article  CAS  Google Scholar 

  34. Quick, J., Quinlan, A.R. & Loman, N.J. Gigascience 3, 22 (2014).

    Article  Google Scholar 

  35. Chaussabel, D. et al. Immunity 29, 150–164 (2008).

    Article  CAS  Google Scholar 

  36. Nakaya, H.I. et al. Nat. Immunol. 12, 786–795 (2011).

    Article  CAS  Google Scholar 

  37. Oh, J.Z. et al. Immunity 41, 478–492 (2014).

    Article  CAS  Google Scholar 

  38. Ravindran, R. et al. Science 343, 313–317 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Damien Chaussabel or Bali Pulendran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaussabel, D., Pulendran, B. A vision and a prescription for big data–enabled medicine. Nat Immunol 16, 435–439 (2015). https://doi.org/10.1038/ni.3151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing