Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus

Subjects

A Corrigendum to this article was published on 18 June 2015

A Corrigendum to this article was published on 21 April 2015

This article has been updated

Abstract

Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of human mAbs to DENV.
Figure 2: Epitope mapping of anti-DENV.
Figure 3: mAbs to FLE versus mAbs to EDE in individual patients.
Figure 4: Antibodies to EDE are potent and highly crossreactive in neutralization assays.
Figure 5: EDE-specific antibodies have superior neutralizing activities.
Figure 6: Binding and neutralization of virus generated by insect cells and DCs.
Figure 7: Binding of antibody to viral particles in various states of maturation.
Figure 8: Reduced ADE with mAbs to EDE.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 08 April 2015

    In the version of this article initially published, affiliation 3 was incomplete. The correct affiliation 3 is as follows: Graduate Program in Immunology, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand. The Acknowledgements section was also incomplete. The "Supported by" statement should end "...and the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (S.S. and J.M.)." The error has been corrected in the HTML and PDF versions of the article.

  • 27 February 2015

    In the version of this article initially published, the sixth author's surname is spelled incorrectly. The correct spelling is Rouvinski. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Westaway, E.G. & Blok, J. in Dengue and Dengue Hemorrhagic fever (eds. Gubler, D.J. & Kuno, G.) 147–173 (CABI Publishing, Oxford, UK, 1997).

  2. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mongkolsapaya, J. et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9, 921–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Mongkolsapaya, J. et al. T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal? J. Immunol. 176, 3821–3829 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Sangkawibha, N. et al. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am. J. Epidemiol. 120, 653–669 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Halstead, S.B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 60, 421–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Murphy, B.R. & Whitehead, S.S. Immune response to dengue virus and prospects for a vaccine. Annu. Rev. Immunol. 29, 587–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Sabchareon, A. et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 380, 1559–1567 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Capeding, M.R. et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384, 1358–1365 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kuhn, R.J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mukhopadhyay, S., Kuhn, R.J. & Rossmann, M.G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Li, L. et al. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319, 1830–1834 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, I.M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Bressanelli, S. et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23, 728–738 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Modis, Y., Ogata, S., Clements, D. & Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Plevka, P. et al. Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. EMBO Rep. 12, 602–606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dejnirattisai, W. et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328, 745–748 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Fibriansah, G. et al. Structural changes in dengue virus when exposed to a temperature of 37C. J. Virol. 87, 7585–7592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, X. et al. Dengue structure differs at the temperatures of its human and mosquito hosts. Proc. Natl. Acad. Sci. USA 110, 6795–6799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith, K. et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 4, 372–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Balakrishnan, T. et al. Dengue virus activates polyreactive, natural IgG B cells after primary and secondary infection. PLoS ONE 6, e29430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wrammert, J. et al. Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J. Virol. 86, 2911–2918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, X. et al. Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat. Struct. Mol. Biol. 20, 105–110 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Modis, Y., Ogata, S., Clements, D. & Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA 100, 6986–6991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferlenghi, I. et al. Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol. Cell 7, 593–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Beltramello, M. et al. The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8, 271–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Lai, C.-Y. et al. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J. Virol. 82, 6631–6643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Costin, J.M. et al. Mechanistic study of broadly neutralizing human monoclonal antibodies against dengue virus that target the fusion loop. J. Virol. 87, 52–66 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, S.A. et al. The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. mBio 4, e00873–00813 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Tsai, W.Y. et al. High-avidity and potently neutralizing cross-reactive human monoclonal antibodies derived from secondary dengue virus infection. J. Virol. 87, 12562–12575 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cherrier, M.V. et al. Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J. 28, 3269–3276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rouvinski, A. et al. Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature (in the press).

  34. Kaufmann, B. et al. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc. Natl. Acad. Sci. USA 107, 18950–18955 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teoh, E.P. et al. The structural basis for serotype-specific neutralization of dengue virus by a human antibody. Sci. Transl. Med. 4, 139ra183 (2012).

    Article  CAS  Google Scholar 

  36. de Alwis, R. et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl. Acad. Sci. USA 109, 7439–7444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fibriansah, G. et al. A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface. EMBO Mol. Med. 6, 358–371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, S.J. et al. Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 6, 816–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Allison, S.L. et al. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695–700 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nelson, S. et al. Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog. 4, e1000060 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Plevka, P., Battisti, A.J., Sheng, J. & Rossmann, M.G. Mechanism for maturation-related reorganization of flavivirus glycoproteins. J. Struct. Biol. 185, 27–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Weikl, T.R. & Paul, F. Conformational selection in protein binding and function. Protein Sci. 23, 1508–1518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trung, D.T. et al. Clinical features of dengue in a large Vietnamese cohort: intrinsically lower platelet counts and greater risk for bleeding in adults than children. PLoS Negl. Trop. Dis. 6, e1679 (2012).

    Article  PubMed  Google Scholar 

  44. Dejnirattisai, W. et al. A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J. Immunol. 181, 5865–5874 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Puttikhunt, C. et al. Novel anti-dengue monoclonal antibody recognizing conformational structure of the prM-E heterodimeric complex of dengue virus. J. Med. Virol. 80, 125–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Sittisombut, N. et al. Lack of augmenting effect of interferon-γ on dengue virus multiplication in human peripheral blood monocytes. J. Med. Virol. 45, 43–49 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, L., Baumann, U. & Reymond, J.L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Heinz, F.X. et al. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198, 109–117 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  51. Scheres, S.H.W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Armed Forces Research Institute of Medical Sciences of Thailand (AFRIMS), C. Puttikhunt (National Center for Genetic Engineering and Biotechnology, Thailand) and W. Kasinrerk (Chiang Mai University) for the mouse mAb 4G2 to DENV E protein and mAb 1H10 to DENV; E. Harris (University of California Berkeley School of Public Health) for mAb E1D8 to DENV NS3 protein; H. Wardemann (Max Planck Institute for Infection Biology) for expression vectors for IgG1 or immunoglobulin κ-chain or λ-chain; A Flanagan (University of Oxford) for recombinant soluble E protein; the staff at Oxford University Clinical Research Unit Viet Nam for sample collection; and N. Ferguson (Imperial College London) for statistical advice. We acknowledge the use of instruments at the Electron Imaging Center for Nanomachines, supported by University of California Los Angeles and the US National Institutes of Health (1S10OD018111 and NSF DBI-1338135). Supported by the Medical Research Council UK, the Wellcome Trust (G.R.S.), the National Institutes for Health Research Biomedical Research Centre, the US National Institutes of Health (GM071940 and AI094386), European Commission Seventh Framework Programme (FP7/2007-2013; DENFREE project, 282 378) and the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (S.S. and J.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.M. and G.R.S. conceived the experiments; Z.H.Z. and F.A.R. conceived the cryo-EM experiments; N.T.H.Q., J.F. and C.P.S. provided specimens; W.D., W.W., S.S., A.J., C.E. and T.D. generated human mAbs; W.D., S.S. and T.D. prepared viral stocks; W.D., S.S., A.J. and C.E. identified cross-reactivity and protein recognition of mAbs; W.D., S.S. and A.J. carried out neutralization, ADE and binding assay; P.M. provided reagents; W.D., S.S., W.W., J.M.G., W.-Y.T., C.-Y.L. and W.W. mapped epitopes; W.-K.W. mapped epitopes; A.R. produced Fab 747(4)B7; X.Z. and X.D. determined the cryo-EM structure; J.M., W.W. and C.E. analyzed antibody clonality; and W.D., J.M. and G.R.S. wrote the paper.

Corresponding authors

Correspondence to Juthathip Mongkolsapaya or Gavin R Screaton.

Ethics declarations

Competing interests

The results from this paper form the basis for an application by G.S., J.M., F.R. and A.R. for a patent on the antibodies and epitope.

Integrated supplementary information

Supplementary Figure 1 DENV structure.

The lattice of 90 E dimers is illustrated in as a cryo electron microscopy reconstruction of the mature dengue virus particle taken from PDB accession no 3J27

Supplementary Figure 2 The cryo-EM of DENV2–Fab 747(4)B7.

The cryo-EM map of the DENV-2/Fab 747B7 complex (mesh) superposed onto the structure of the unbound mature DENV-2 virion, from the 3.5Å cryo-EM structure (PDB accession no 3J27), represented with the E proteins shown as surfaces. The three independent E polypeptides of the icosahedral asymmetric unit are displayed in different colors.

Supplementary Figure 3 The Fourier shell correlation function.

The Fourier shell correlation function (Harauz, G. and van Heel M. Optik 73, 146-156 (1986)) indicates a resolution of about 10 Å considering a 0.5 cutoff correlation value, and about 8Å if the 0.143 cutoff is used.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–3 (PDF 2084 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dejnirattisai, W., Wongwiwat, W., Supasa, S. et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat Immunol 16, 170–177 (2015). https://doi.org/10.1038/ni.3058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing