Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unconventional post-translational modifications in immunological signaling

Abstract

The activity of a cell is governed by the signals it receives from the extracellular milieu, which are 'translated' into the appropriate biological output, such as activation, survival, proliferation, migration or differentiation. Signaling pathways are responsible for converting environmental cues into discrete intracellular events. The alteration of existing proteins by post-translational modification (PTM) is a key feature of signal-transduction pathways that allows the modulation of protein function. Research into PTMs has long been dominated by the investigation of protein phosphorylation; other PTMs, such as methylation of lysine and arginine residues, acetylation, and nitrosylation of thiol groups and tyrosine residues, have received comparatively little attention. This Review aims to present an overview of these PTMs, with an emphasis on their role in cells of the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PTMs described in this Review.
Figure 2: Protein methyltransferases regulate innate and adaptive immune responses.
Figure 3: PAD-activation pathways in the immune system.

Similar content being viewed by others

References

  1. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    CAS  PubMed  Google Scholar 

  2. Oeckinghaus, A., Hayden, M.S. & Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12, 695–708 (2011).

    CAS  PubMed  Google Scholar 

  3. O'Shea, J.J. & Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36, 542–550 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Müller, M.R. & Rao, A. NFAT, immunity and cancer: a transcription factor comes of age. Nat. Rev. Immunol. 10, 645–656 (2010).

    PubMed  Google Scholar 

  5. Black, J.C., Van Rechem, C. & Whetstine, J.R. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell 48, 491–507 (2012).

    CAS  PubMed  Google Scholar 

  6. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    CAS  PubMed  Google Scholar 

  7. Bossen, C., Mansson, R. & Murre, C. Chromatin topology and the regulation of antigen receptor assembly. Annu. Rev. Immunol. 30, 337–356 (2012).

    CAS  PubMed  Google Scholar 

  8. Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K. & O'Shea, J.J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30, 707–731 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Natoli, G. Maintaining cell identity through global control of genomic organization. Immunity 33, 12–24 (2010).

    CAS  PubMed  Google Scholar 

  10. Cedar, H. & Bergman, Y. Epigenetics of haematopoietic cell development. Nat. Rev. Immunol. 11, 478–488 (2011).

    CAS  PubMed  Google Scholar 

  11. Bedford, M.T. Arginine methylation at a glance. J. Cell Sci. 120, 4243–4246 (2007).

    CAS  PubMed  Google Scholar 

  12. Zurita-Lopez, C.I., Sandberg, T., Kelly, R. & Clarke, S.G. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming omega-NG-monomethylated arginine residues. J. Biol. Chem. 287, 7859–7870 (2012).

  13. Bedford, M.T. et al. Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J. Biol. Chem. 275, 16030–16036 (2000).

    CAS  PubMed  Google Scholar 

  14. Levy, D. et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol. 12, 29–36 (2011).This paper identifies RelA (p65) as a substrate of the PKMT SETD6, which interferes with RelA-driven transcription, and demonstrates that SETD6-dependent methylation of RelA prevents its association with the transcriptional activator GLP.

    CAS  PubMed  Google Scholar 

  15. Ea, C.K. & Baltimore, D. Regulation of NF-κB activity through lysine monomethylation of p65. Proc. Natl. Acad. Sci. USA 106, 18972–18977 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu, T. et al. Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc. Natl. Acad. Sci. USA 107, 46–51 (2010).

    CAS  PubMed  Google Scholar 

  17. Lu, T. et al. Role of lysine methylation of NF-κB in differential gene regulation. Proc. Natl. Acad. Sci. USA 110, 13510–13515 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, J. et al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci. USA 107, 21499–21504 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blanchet, F., Cardona, A., Letimier, F.A., Hershfield, M.S. & Acuto, O. CD28 costimulatory signal induces protein arginine methylation in T cells. J. Exp. Med. 202, 371–377 (2005).This report demonstrates that methylation of arginine is induced downstream of coligation of the TCR and CD28.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fathman, J.W. et al. NIP45 controls the magnitude of the type 2 T helper cell response. Proc. Natl. Acad. Sci. USA 107, 3663–3668 (2010).

    CAS  Google Scholar 

  21. Mowen, K.A., Schurter, B.T., Fathman, J.W., David, M. & Glimcher, L.H. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol. Cell 15, 559–571 (2004).

    CAS  PubMed  Google Scholar 

  22. Infantino, S. et al. Arginine methylation of the B cell antigen receptor promotes differentiation. J. Exp. Med. 207, 711–719 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stark, G.R. & Darnell, J.E. Jr. The JAK-STAT pathway at twenty. Immunity 36, 503–514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Abramovich, C., Yakobson, B., Chebath, J. & Revel, M. A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J. 16, 260–266 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Müller, P., Kuttenkeuler, D., Gesellchen, V., Zeidler, M.P. & Boutros, M. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436, 871–875 (2005).

    PubMed  Google Scholar 

  26. Pollack, B.P. et al. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J. Biol. Chem. 274, 31531–31542 (1999).

    CAS  PubMed  Google Scholar 

  27. Mowen, K.A. et al. Arginine methylation of STAT1 modulates IFNα/β-induced transcription. Cell 104, 731–741 (2001).

    CAS  PubMed  Google Scholar 

  28. Komyod, W., Bauer, U.M., Heinrich, P.C., Haan, S. & Behrmann, I. Are STATS arginine-methylated? J. Biol. Chem. 280, 21700–21705 (2005).

    CAS  PubMed  Google Scholar 

  29. Rho, J., Choi, S., Seong, Y.R., Choi, J. & Im, D.S. The arginine-1493 residue in QRRGRTGR1493G motif IV of the hepatitis C virus NS3 helicase domain is essential for NS3 protein methylation by the protein arginine methyltransferase 1. J. Virol. 75, 8031–8044 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, W., Daines, M.O. & Hershey, G.K. Methylation of STAT6 modulates STAT6 phosphorylation, nuclear translocation, and DNA-binding activity. J. Immunol. 172, 6744–6750 (2004).

    CAS  PubMed  Google Scholar 

  31. Iwasaki, H. et al. Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation. Circ. Res. 107, 992–1001 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Duong, F.H., Filipowicz, M., Tripodi, M., La Monica, N. & Heim, M.H. Hepatitis C virus inhibits interferon signaling through up-regulation of protein phosphatase 2A. Gastroenterology 126, 263–277 (2004).

    CAS  PubMed  Google Scholar 

  33. Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).

    CAS  PubMed  Google Scholar 

  34. Lee, Y.H. & Stallcup, M.R. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol. Endocrinol. 23, 425–433 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Covic, M. et al. Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-κB -dependent gene expression. EMBO J. 24, 85–96 (2005).This paper shows that CARM1 acts to regulate the expression of genes encoding inflammatory molecules.

    CAS  PubMed  Google Scholar 

  36. Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat. Rev. Immunol. 10, 24–35 (2010).

    CAS  PubMed  Google Scholar 

  37. Li, H. et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J. Biol. Chem. 277, 44623–44630 (2002).

    CAS  PubMed  Google Scholar 

  38. Yadav, N. et al. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc. Natl. Acad. Sci. USA 100, 6464–6468 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, J. et al. Coactivator-associated arginine methyltransferase 1 regulates fetal hematopoiesis and thymocyte development. J. Immunol. 190, 597–604 (2013).

    CAS  PubMed  Google Scholar 

  40. Kuo, A.J. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Martinez-Garcia, E. et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117, 211–220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. McCabe, M.T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).This article demonstrates the inhibition of mutant oncogenic EZH2 proteins through the use of selective inhibitors, which suggests a potential therapeutic strategy for some malignancies.

    CAS  PubMed  Google Scholar 

  43. Chung, J. et al. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing. J. Biol. Chem. 288, 35534–35547 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pal, S. et al. Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J. 26, 3558–3569 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, L., Pal, S. & Sif, S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol. Cell. Biol. 28, 6262–6277 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, F. et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19, 283–294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Helin, K. & Dhanak, D. Chromatin proteins and modifications as drug targets. Nature 502, 480–488 (2013).

    CAS  PubMed  Google Scholar 

  48. Cheung, N., Chan, L.C., Thompson, A., Cleary, M.L. & So, C.W. Protein arginine-methyltransferase-dependent oncogenesis. Nat. Cell Biol. 9, 1208–1215 (2007).This paper shows that fusion of PRMT1 to MLL is sufficient to drive malignancy.

    CAS  PubMed  Google Scholar 

  49. O'Brien, K.B. et al. CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development 137, 2147–2156 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vossenaar, E.R., Zendman, A.J., van Venrooij, W.J. & Pruijn, G.J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25, 1106–1118 (2003).

    CAS  PubMed  Google Scholar 

  51. György, B., Toth, E., Tarcsa, E., Falus, A. & Buzas, E.I. Citrullination: a posttranslational modification in health and disease. Int. J. Biochem. Cell Biol. 38, 1662–1677 (2006).

    PubMed  Google Scholar 

  52. Méchin, M.C. et al. Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. Int. J. Cosmet. Sci. 29, 147–168 (2007).

    PubMed  Google Scholar 

  53. Arita, K. et al. Structural basis for Ca2+-induced activation of human PAD4. Nat. Struct. Mol. Biol. 11, 777–783 (2004).

    CAS  PubMed  Google Scholar 

  54. Nakayama-Hamada, M. et al. Comparison of enzymatic properties between hPADI2 and hPADI4. Biochem. Biophys. Res. Commun. 327, 192–200 (2005).

    CAS  PubMed  Google Scholar 

  55. Foulquier, C. et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 56, 3541–3553 (2007).

    CAS  PubMed  Google Scholar 

  56. Arandjelovic, S., McKenney, K.R., Leming, S.S. & Mowen, K.A. ATP induces protein arginine deiminase 2-dependent citrullination in mast cells through the P2X7 purinergic receptor. J. Immunol. 189, 4112–4122 (2012).

  57. Lee, H.J. et al. Peptidylarginine deiminase 2 suppresses inhibitory κB kinase activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Biol. Chem. 285, 39655–39662 (2010).

    CAS  Google Scholar 

  58. Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49–62 (2007).

    CAS  PubMed  Google Scholar 

  59. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    CAS  PubMed  Google Scholar 

  61. Lister, M.F. et al. The role of the purinergic P2X7 receptor in inflammation. J. Inflamm. (Lond.) 4, 5 (2007).

    Google Scholar 

  62. Flannagan, R.S., Cosio, G. & Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7, 355–366 (2009).

    CAS  PubMed  Google Scholar 

  63. Nauseef, W.M. How human neutrophils kill and degrade microbes: an integrated view. Immunol. Rev. 219, 88–102 (2007).

    CAS  PubMed  Google Scholar 

  64. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  65. Hemmers, S., Teijaro, J.R., Arandjelovic, S. & Mowen, K.A. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS ONE 6, e22043 (2011).

  66. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).This is the first paper to demonstrate that PAD4 is essential for NET formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184, 205–213 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Buono, C. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl. Acad. Sci. USA 102, 1596–1601 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Klareskog, L., Ronnelid, J., Lundberg, K., Padyukov, L. & Alfredsson, L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26, 651–675 (2008).

    CAS  PubMed  Google Scholar 

  70. Garcia-Romo, G.S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. Crome, S.Q., Wang, A.Y. & Levings, M.K. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin. Exp. Immunol. 159, 109–119 (2010).

  72. Kidd, B.A. et al. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res. Ther. 10, R119 (2008).

    PubMed  PubMed Central  Google Scholar 

  73. Wood, D.D. et al. Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab. Invest. 88, 354–364 (2008).

    CAS  PubMed  Google Scholar 

  74. Moscarello, M.A., Pritzker, L., Mastronardi, F.G. & Wood, D.D. Peptidylarginine deiminase: a candidate factor in demyelinating disease. J. Neurochem. 81, 335–343 (2002).

    CAS  PubMed  Google Scholar 

  75. Asaga, H., Akiyama, K., Ohsawa, T. & Ishigami, A. Increased and type II-specific expression of peptidylarginine deiminase in activated microglia but not hyperplastic astrocytes following kainic acid-evoked neurodegeneration in the rat brain. Neurosci. Lett. 326, 129–132 (2002).

    CAS  PubMed  Google Scholar 

  76. Sambandam, T. et al. Increased peptidylarginine deiminase type II in hypoxic astrocytes. Biochem. Biophys. Res. Commun. 325, 1324–1329 (2004).

    CAS  PubMed  Google Scholar 

  77. Akiyama, K., Sakurai, Y., Asou, H. & Senshu, T. Localization of peptidylarginine deiminase type II in a stage-specific immature oligodendrocyte from rat cerebral hemisphere. Neurosci. Lett. 274, 53–55 (1999).

    CAS  PubMed  Google Scholar 

  78. Musse, A.A. et al. Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 1, 229–240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Raijmakers, R. et al. Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice. J. Comp. Neurol. 498, 217–226 (2006).

    CAS  PubMed  Google Scholar 

  80. Masson-Bessière, C. et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the α- and β-chains of fibrin. J. Immunol. 166, 4177–4184 (2001).This study shows that the autoantibodies to keratin and filaggrin found in patients with RA recognize epitopes that contain citrulline.

    PubMed  Google Scholar 

  81. Hill, J.A. et al. Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J. Exp. Med. 205, 967–979 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kuhn, K.A. et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J. Clin. Invest. 116, 961–973 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lundberg, K. et al. Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis Res. Ther. 7, R458–R467 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003).This article identifies PADI4 as a gene linked to susceptibility to RA.

    CAS  PubMed  Google Scholar 

  85. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao, X. et al. Circulating immune complexes contain citrullinated fibrinogen in rheumatoid arthritis. Arthritis Res. Ther. 10, R94 (2008).

    PubMed  PubMed Central  Google Scholar 

  87. Yoshida, M. et al. Autoimmunity to citrullinated type II collagen in rheumatoid arthritis. Mod. Rheumatol. 16, 276–281 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jones, J.E., Causey, C.P., Knuckley, B., Slack-Noyes, J.L. & Thompson, P.R. Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Curr. Opin. Drug Discov. Devel. 12, 616–627 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dwivedi, N. et al. Felty's syndrome autoantibodies bind to deiminated histones and neutrophil extracellular traps. Arthritis Rheum. 64, 982–992 (2012).

    CAS  PubMed  Google Scholar 

  90. Förstermann, U. et al. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem. Pharmacol. 42, 1849–1857 (1991).

    PubMed  Google Scholar 

  91. Benhar, M., Forrester, M.T. & Stamler, J.S. Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat. Rev. Mol. Cell Biol. 10, 721–732 (2009).

    CAS  PubMed  Google Scholar 

  92. Choi, Y.B. et al. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat. Neurosci. 3, 15–21 (2000).

    CAS  PubMed  Google Scholar 

  93. Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517 (2006).

    CAS  PubMed  Google Scholar 

  94. Doulias, P.T. et al. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc. Natl. Acad. Sci. USA 107, 16958–16963 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, Y., Fang, S., Jensen, J.P., Weissman, A.M. & Ashwell, J.D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    CAS  PubMed  Google Scholar 

  96. Nakamura, T. et al. Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol. Cell 39, 184–195 (2010).This paper demonstrates that NO reacts with XIAP by S-nitrosylating its RING domain, which inhibits its E3 ligase and antiapoptotic activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hara, M.R. et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7, 665–674 (2005).

    CAS  PubMed  Google Scholar 

  98. Ryu, I.H. & Do, S.I. Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem. Biophys. Res. Commun. 408, 52–57 (2011).

    CAS  PubMed  Google Scholar 

  99. Seth, D. & Stamler, J.S. The SNO-proteome: causation and classifications. Curr. Opin. Chem. Biol. 15, 129–136 (2011).

    CAS  PubMed  Google Scholar 

  100. MacMillan-Crow, L.A. & Thompson, J.A. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch. Biochem. Biophys. 366, 82–88 (1999).

    CAS  PubMed  Google Scholar 

  101. Redondo-Horcajo, M. et al. Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide. Cardiovasc. Res. 87, 356–365 (2010).

    CAS  PubMed  Google Scholar 

  102. Llovera, M., Pearson, J.D., Moreno, C. & Riveros-Moreno, V. Impaired response to interferon-γ in activated macrophages due to tyrosine nitration of STAT1 by endogenous nitric oxide. Br. J. Pharmacol. 132, 419–426 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Birnboim, H.C., Lemay, A.M., Lam, D.K., Goldstein, R. & Webb, J.R. Cutting edge: MHC class II-restricted peptides containing the inflammation-associated marker 3-nitrotyrosine evade central tolerance and elicit a robust cell-mediated immune response. J. Immunol. 171, 528–532 (2003).

    CAS  PubMed  Google Scholar 

  104. Herzog, J., Maekawa, Y., Cirrito, T.P., Illian, B.S. & Unanue, E.R. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells. Proc. Natl. Acad. Sci. USA 102, 7928–7933 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  107. Haberland, M., Montgomery, R.L. & Olson, E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chi, H. & Flavell, R.A. Acetylation of MKP-1 and the control of inflammation. Sci. Signal. 1, pe44 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Chang, H.M. et al. Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc. Natl. Acad. Sci. USA 101, 9578–9583 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Munshi, N. et al. Acetylation of HMG I(Y) by CBP turns off IFN β expression by disrupting the enhanceosome. Mol. Cell 2, 457–467 (1998).

    CAS  PubMed  Google Scholar 

  111. Chen, L.F., Mu, Y. & Greene, W.C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 21, 6539–6548 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Nusinzon, I. & Horvath, C.M. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc. Natl. Acad. Sci. USA 100, 14742–14747 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Krämer, O.H. et al. Acetylation of Stat1 modulates NF-κB activity. Genes Dev. 20, 473–485 (2006).

    PubMed  PubMed Central  Google Scholar 

  114. Wang, R., Cherukuri, P. & Luo, J. Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J. Biol. Chem. 280, 11528–11534 (2005).

    CAS  PubMed  Google Scholar 

  115. Yuan, Z.L., Guan, Y.J., Chatterjee, D. & Chin, Y.E. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307, 269–273 (2005).This paper demonstrates that STAT3 is regulated by acetylation of its lysine residues.

    CAS  PubMed  Google Scholar 

  116. Bresnick, E.H., Lee, H.Y., Fujiwara, T., Johnson, K.D. & Keles, S. GATA switches as developmental drivers. J. Biol. Chem. 285, 31087–31093 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Dengler, H.S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat. Immunol. 9, 1388–1398 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kerdiles, Y.M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kerdiles, Y.M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hayakawa, F. et al. Functional regulation of GATA-2 by acetylation. J. Leukoc. Biol. 75, 529–540 (2004).

    CAS  PubMed  Google Scholar 

  121. Yamagata, T. et al. Acetylation of GATA-3 affects T-cell survival and homing to secondary lymphoid organs. EMBO J. 19, 4676–4687 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Calnan, D.R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    CAS  PubMed  Google Scholar 

  123. Uhlmann, T. et al. A method for large-scale identification of protein arginine methylation. Mol. Cell. Proteomics 11, 1489–1499 (2012).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.M. Keith for assistance in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael David.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mowen, K., David, M. Unconventional post-translational modifications in immunological signaling. Nat Immunol 15, 512–520 (2014). https://doi.org/10.1038/ni.2873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing