Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing

A Corrigendum to this article was published on 16 January 2015

This article has been updated

Abstract

Lymphocytes are recruited from blood by high-endothelial venules (HEVs). We performed transcriptomic analyses and identified molecular signatures that distinguish HEVs from capillary endothelium and that define tissue-specific HEV specialization. Capillaries expressed gene programs for vascular development. HEV-expressed genes showed enrichment for genes encoding molecules involved in immunological defense and lymphocyte migration. We identify capillary and HEV markers and candidate mechanisms for regulated recruitment of lymphocytes, including a lymph node HEV–selective transmembrane mucin; transcriptional control of functionally specialized carbohydrate ligands for lymphocyte L-selectin; HEV expression of molecules for transendothelial migration; and metabolic programs for lipid mediators of lymphocyte motility and chemotaxis. We also elucidate a carbohydrate-recognition pathway that targets B cells to intestinal lymphoid tissues, defining CD22 as a lectin-homing receptor for mucosal HEVs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation and transcriptional diversity of lymph node and PP blood EC subsets.
Figure 2: HEC and CAP EC gene signatures.
Figure 3: GO and pathway analyses of HEC and CAP EC signature gene sets.
Figure 4: Expression of selected cytokines and chemokines and their receptors, integrins, GPCRs, transcription factors, and mucin domain–containing or immunoglobulin domain–containing adhesion receptors in HECs and CAP ECs of lymphoid tissues.
Figure 5: Transcriptomic specialization of peripheral lymph node and gut associated HECs.
Figure 6: Segmental and tissue-selective expression of genes encoding molecules involved in the synthesis of L-selectin ligands.
Figure 7: Selective PP HEC expression of St6gal1 confers recognition of PP HECs by CD22 and CD22-mediated homing of B cells to GALT.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

Change history

  • 27 October 2014

    In the version of this article initially published, Hiroto Kawashima was omitted as an author. The correct author list is as follows: Mike Lee1, Helena Kiefel1, Melissa D LaJevic1, Matthew S Macauley2, Hiroto Kawashima3, Edward O'Hara4, Junliang Pan4, James C Paulson2 & Eugene C Butcher1,4,5. The affiliation for this author is as follows: Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan. The Author Contributions section should include "H.K. provided advice and the S2 hybridoma" (and the corresponding first thanks in Acknowledgments should be removed). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Gauguet, J.M., Bonasio, R. & von Andrian, U.H. in Endothelial Biomedicine (ed. Aird, W.C.) Ch. 170 (Cambridge University Press, New York, 2007).

  2. Anderson, N.D., Anderson, A.O. & Wyllie, R.G. Specialized structure and metabolic activities of high endothelial venules in rat lymphatic tissues. Immunology 31, 455–473 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Girard, J.P., Moussion, C. & Forster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kruse, A., Hallmann, R. & Butcher, E.C. Specialized patterns of vascular differentiation antigens in the pregnant mouse uterus and the placenta. Biol. Reprod. 61, 1393–1401 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Doyle, E.L. et al. CD63 is an essential cofactor to leukocyte recruitment by endothelial P-selectin. Blood 118, 4265–4273 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Jutila, M.A. et al. Ly-6C is a monocyte/macrophage and endothelial cell differentiation antigen regulated by interferon-γ. Eur. J. Immunol. 18, 1819–1826 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, G. et al. Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation. FEBS Lett. 582, 2957–2964 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Kitagawa, M. et al. Hes1 and Hes5 regulate vascular remodeling and arterial specification of endothelial cells in brain vascular development. Mech. Dev. 130, 458–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Brütsch, R. et al. Integrin cytoplasmic domain-associated protein-1 attenuates sprouting angiogenesis. Circ. Res. 107, 592–601 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. Verkman, A.S. Aquaporin water channels and endothelial cell function. J. Anat. 200, 617–627 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyasaka, M. & Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat. Rev. Immunol. 4, 360–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Demyanets, S., Huber, K. & Wojta, J. Vascular effects of glycoprotein130 ligands–—part I: pathophysiological role. Vascul. Pharmacol. 56, 34–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Sarrazin, S., Lamanna, W.C. & Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3, a004952 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Campbell, J.J. et al. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Griffith, J.W., Sokol, C.L. & Luster, A.D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32, 659–702 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Zlotnik, A. & Yoshie, O. The chemokine superfamily revisited. Immunity 36, 705–716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kiefer, F. & Siekmann, A.F. The role of chemokines and their receptors in angiogenesis. Cell. Mol. Life Sci. 68, 2811–2830 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Ahn, S.Y. et al. Tumor necrosis factor-α induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-α-induced fractalkine expression. Am. J. Pathol. 164, 1663–1672 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ryu, J. et al. Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia. Cardiovasc. Res. 78, 333–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Patnode, M.L. et al. KSGal6ST generates galactose-6-O-sulfate in high endothelial venules but does not contribute to L-selectin-dependent lymphocyte homing. Glycobiology 23, 381–394 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Strilic´, B. et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev. Cell 17, 505–515 (2009).

    Article  PubMed  CAS  Google Scholar 

  24. Umemoto, E. et al. Novel regulators of lymphocyte trafficking across high endothelial venules. Crit. Rev. Immunol. 31, 147–169 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Charfi, C., Levros, L.C. Jr., Edouard, E. & Rassart, E. Characterization and identification of PARM-1 as a new potential oncogene. Mol. Cancer 12, 84–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karikoski, M. et al. Clever-1/Stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur. J. Immunol. 39, 3477–3487 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Jalkanen, S. & Salmi, M. VAP-1 and CD73, endothelial cell surface enzymes in leukocyte extravasation. Arterioscler. Thromb. Vasc. Biol. 28, 18–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Bai, Z. et al. Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis. J. Immunol. 190, 2036–2048 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Halin, C. et al. The S1P-analog FTY720 differentially modulates T-cell homing via HEV: T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood 106, 1314–1322 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Preuss, I. et al. Transcriptional regulation and functional characterization of the oxysterol/EBI2 system in primary human macrophages. Biochem. Biophys. Res. Commun. 446, 663–668 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Spann, N.J. & Glass, C.K. Sterols and oxysterols in immune cell function. Nat. Immunol. 14, 893–900 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, C.C. et al. Homeodomain factor Nkx2–3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Dev. Biol. 224, 152–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Ortolan, E. et al. CD157 plays a pivotal role in neutrophil transendothelial migration. Blood 108, 4214–4222 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, X., Strable, M.S. & Ntambi, J.M. Stearoyl CoA desaturase 1: role in cellular inflammation and stress. Adv. Nutrition 2, 15–22 (2011).

    Article  CAS  Google Scholar 

  35. Waller-Evans, H. et al. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS ONE 5, e14047 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sperandio, M., Gleissner, C.A. & Ley, K. Glycosylation in immune cell trafficking. Immunol. Rev. 230, 97–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uchimura, K. et al. A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat. Immunol. 6, 1105–1113 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Crocker, P.R., Paulson, J.C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Vincourt, J.B., Jullien, D., Amalric, F. & Girard, J.P. Molecular and functional characterization of SLC26A11, a sodium-independent sulfate transporter from high endothelial venules. FASEB J. 17, 890–892 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Andrews, P., Milsom, D.W. & Ford, W.L. Migration of lymphocytes across specialized vascular endothelium. V. Production of a sulphated macromolecule by high endothelial cells in lymph nodes. J. Cell Sci. 57, 277–292 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. Angata, K. & Fukuda, M. Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie 85, 195–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Hirakawa, J. et al. Novel anti-carbohydrate antibodies reveal the cooperative function of sulfated N- and O-glycans in lymphocyte homing. J. Biol. Chem. 285, 40864–40878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kannagi, R. et al. in The Molecular Immunology of Complex Carbohydrates (ed. Wu, A.M.) Ch. 29 (Springer Science+Business Media, New York, 2011).

  44. Harduin-Lepers, A. et al. The human sialyltransferase family. Biochimie 83, 727–737 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Paulson, J.C., Prieels, J.P., Glasgow, L.R. & Hill, R.L. Sialyl- and fucosyltransferases in the biosynthesis of asparaginyl-linked oligosaccharides in glycoproteins. Mutually exclusive glycosylation by β-galactoside alpha2 goes to 6 sialyltransferase and N-acetylglucosaminide α1 goes to 3 fucosyltransferase. J. Biol. Chem. 253, 5617–5624 (1978).

    Article  CAS  PubMed  Google Scholar 

  46. Marth, J.D. & Grewal, P.K. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Naito, Y. et al. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol. 27, 3008–3022 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stevens, S.K., Weissman, I.L. & Butcher, E.C. Differences in the migration of B and T lymphocytes: organ-selective localization in vivo and the role of lymphocyte-endothelial cell recognition. J. Immunol. 128, 844–851 (1982).

    CAS  PubMed  Google Scholar 

  49. Bargatze, R.F., Jutila, M.A. & Butcher, E.C. Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer's patch-HEV in situ: the multistep model confirmed and refined. Immunity 3, 99–108 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Nitschke, L., Floyd, H., Ferguson, D.J. & Crocker, P.R. Identification of CD22 ligands on bone marrow sinusoidal endothelium implicated in CD22-dependent homing of recirculating B cells. J. Exp. Med. 189, 1513–1518 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hanasaki, K., Varki, A. & Powell, L.D. CD22-mediated cell adhesion to cytokine-activated human endothelial cells. Positive and negative regulation by α2–6-sialylation of cellular glycoproteins. J. Biol. Chem. 270, 7533–7542 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Limaye, V., Vadas, M.A., Pitson, S.M. & Gamble, J.R. The effects of markedly raised intracellular sphingosine kinase-1 activity in endothelial cells. Cell. Mol. Biol. Lett. 14, 411–423 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McDonald, J.G. & Russell, D.W. 25-Hydroxycholesterol: a new life in immunology. J. Leukoc. Biol. 88, 1071–1072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yi, T. et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 37, 535–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fre, S. et al. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLoS ONE 6, e25785 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nitschke, L., Carsetti, R., Ocker, B., Kohler, G. & Lamers, M.C. CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7, 133–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Hennet, T., Chui, D., Paulson, J.C. & Marth, J.D. Immune regulation by the ST6Gal sialyltransferase. Proc. Natl. Acad. Sci. USA 95, 4504–4509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen, Z., Lu, Z., Chhatbar, P.Y., O'Herron, P. & Kara, P. An artery-specific fluorescent dye for studying neurovascular coupling. Nat. Methods 9, 273–276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Sweere, A. Scholz, C. Czupalla and B. Arlian for help with experiments; J. Jang for antibody production; L. Rott for assistance with cell sorting; all members of the Butcher laboratory for discussions; B. Yoo (Stanford University) and T.A. Rando (Stanford University) for tissues from Hes1-EmGFPSAT mice; M. Salmi and M. Miyasaka for critical review of the manuscript; and the UniProt Consortium, the Kyoto Encyclopedia of Genes and Genomes, Enrichr software (E.Y. Chen, C.M. Tan, Y. Kou, Q. Duan, Z. Wang, G.V. Meirelles, N.R. Clark and Ma'ayan A. of the Icahn School of Medicine at Mount Sinai), iHOP (Information Hyperlinked over Proteins) online gene-guided access to PubMed abstracts, and the Immunological Genome Project for their informatics tools and compendia of data. Supported by the US National Institutes of Health (R37 GM37734, R37 AI047822, R01 AI093981 and R01 DK084647 to E.C.B.; 5T32AI007290 to M.L.; 5T32CA009151, 5T32AI007290 and F32CA180415 to M.D.L.; and R01 AI50143 to J.C.P.), the US Department of Veterans Affairs (E.C.B.), the Klaus Bensch Professorship (E.C.B.), Deutsche Forschungsgemeinschaft (KI1646/1-2 to H.Ki.), the Stanford Institute for Immunity, Transplantation and Infection (H.Ki.), the American Heart Association (H.Ki.) and the Crohn's and Colitis Foundation of America (Ref. 3782 to M.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.L. developed HEC-isolation protocols and designed and performed experiments, including flow cytometry of ECs, whole-genome expression analyses, immunohistology and homing studies; H.Ki. performed flow cytometry and immunofluorescence staining; M.D.L. performed immunoprecipitation and immunoblot analysis studies; M.S.M. did homing studies; H.Ka. provided advice and the S2 hybridoma; M.S.M. and J.C.P. contributed to writing of the section on HEV glycans; E.O. established the parameters for the isolation of RNA from HECs; J.P. provided intellectual input; and E.C.B. designed and guided the study, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Eugene C Butcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 GFP expression by PLN HECs and CAP ECs of Hes1-GFP transgenic reporter mice.

FACS analyses results of GFP signals in isolated PLN HEC and CAP from Hes1-GFP knock-in reporter mice as described in Fig. 2c. Result is from a single experiment supportive of immunofluorescence images in Fig. 3d.

Supplementary Figure 2 PARM-1 is decorated with PNAd in mouse lymph nodes.

Representative immunoblot (WB) of Parm1 immunoprecipitate (IP) from mouse lymph node membrane enriched protein probed for Parm1 (green) and MECA-79 (red). * indicates two isoforms of Parm1 proteins, of which the higher molecular weight band is also detected by MECA-79, but in parallel experiments did not bind control rat IgM (not shown). Control IP is IP using anti-Hsp90 antibody, a monoclonal rabbit IgG. Numbers on the left indicate the position of molecular weight standard proteins of the indicated kDa. Data are representative of 3 independent experiments with axillary, brachial and in some instances mesenteric lymph nodes pooled from 2-3 mice in each case.

Supplementary Figure 3 Gating strategy for the isolation of PLN, MLN and PP HECs and CAP ECs by flow cytometry.

FACS plots (both pre-sort and post-sort) showing the gating strategy (successive gating starts from the lineage gating on the left to the CD31 versus gp38 gating in the middle to the HEC vs CAP gating on the right) for BEC subset isolation after standard forward/side scatter and live/dead gating. Scatter gating was designed to include only live cells. A strict forward angle gate was used to exclude doublets. Numbers in blue font represent the percent of cells within the gate.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 349 kb)

Supplementary Table 1

Supplementary Table 1 (XLSX 776 kb)

Supplementary Table 2

Supplementary Table 2 (XLSX 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Kiefel, H., LaJevic, M. et al. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nat Immunol 15, 982–995 (2014). https://doi.org/10.1038/ni.2983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing