Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nuclear receptor LXRα controls the functional specialization of splenic macrophages

Abstract

Macrophages are professional phagocytic cells that orchestrate innate immune responses and have considerable phenotypic diversity at different anatomical locations. However, the mechanisms that control the heterogeneity of tissue macrophages are not well characterized. Here we found that the nuclear receptor LXRα was essential for the differentiation of macrophages in the marginal zone (MZ) of the spleen. LXR-deficient mice were defective in the generation of MZ and metallophilic macrophages, which resulted in abnormal responses to blood-borne antigens. Myeloid-specific expression of LXRα or adoptive transfer of wild-type monocytes restored the MZ microenvironment in LXRα-deficient mice. Our results demonstrate that signaling via LXRα in myeloid cells is crucial for the generation of splenic MZ macrophages and identify an unprecedented role for a nuclear receptor in the generation of specialized macrophage subsets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective differentiation of MZ macrophages in LXR-deficient mice.
Figure 2: Generation of MZ macrophages requires LXR function in hematopoietic progenitors.
Figure 3: Distribution and function of MZ B cells.
Figure 4: Abnormal capture of blood-borne antigens by LXR-deficient splenic macrophages.
Figure 5: MZ macrophage differentiation is specifically controlled by LXRα.
Figure 6: LXRα function in myeloid cells is required for MZ macrophage development.
Figure 7: Adoptive transfer of monocytes reconstitutes the splenic MZ microenvironment in LXRα-deficient mice.
Figure 8: LXR signaling is necessary for the postnatal development of splenic MZ macrophages.
Figure 9: Activation of LXRα accelerates the development and renewal of MZ macrophages.

Similar content being viewed by others

References

  1. Taylor, P.R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Elliott, M.R. & Ravichandran, K.S. Clearance of apoptotic cells: implications in health and disease. J. Cell Biol. 189, 1059–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gordon, S. & Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 35, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mebius, R.E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kraal, G. & Mebius, R. New insights into the cell biology of the marginal zone of the spleen. Int. Rev. Cytol. 250, 175–215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. den Haan, J.M. & Kraal, G. Innate immune functions of macrophage subpopulations in the spleen. J. Innate Immun. 4, 437–445 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Martin, F. & Kearney, J.F. Marginal-zone B cells. Nat. Rev. Immunol. 2, 323–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Repa, J.J. & Mangelsdorf, D.J. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu. Rev. Cell Dev. Biol. 16, 459–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. A-González, N. & Castrillo, A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim. Biophys. Acta 1812, 982–994 (2011).

    Article  PubMed  CAS  Google Scholar 

  13. Glass, C.K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Joseph, S.B., Castrillo, A., Laffitte, B.A., Mangelsdorf, D.J. & Tontonoz, P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9, 213–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. A-González, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hong, C. et al. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Invest. 122, 337–347 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Calkin, A.C. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13, 213–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Streeter, P.R., Berg, E.L., Rouse, B.T., Bargatze, R.F. & Butcher, E.C. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature 331, 41–46 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Garin, A. et al. Toll-like receptor 4 signaling by follicular dendritic cells is pivotal for germinal center onset and affinity maturation. Immunity 33, 84–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Hemmi, H. et al. A new triggering receptor expressed on myeloid cells (Trem) family member, Trem-like 4, binds to dead cells and is a DNAX activation protein 12-linked marker for subsets of mouse macrophages and dendritic cells. J. Immunol. 182, 1278–1286 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Nolte, M.A. et al. B cells are crucial for both development and maintenance of the splenic marginal zone. J. Immunol. 172, 3620–3627 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Karlsson, M.C. et al. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J. Exp. Med. 198, 333–340 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu, T.T. & Cyster, J.G. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297, 409–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Joseph, S.B. et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119, 299–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe, Y. et al. Expression of the LXRalpha protein in human atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 25, 622–627 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. He, W. et al. Development of a synthetic promoter for macrophage gene therapy. Hum. Gene Ther. 17, 949–959 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Li, G. et al. Macrophage LXRα gene therapy ameliorates atherosclerosis as well as hypertriglyceridemia in LDLR−/− mice. Gene Ther. 18, 835–841 (2011).

    Article  PubMed  CAS  Google Scholar 

  29. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under Homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Hong, C. et al. Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: identification of ARL7 as a direct target. J. Lipid Res. 52, 531–539 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Ingersoll, M.A. et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10–e19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Rooijen, N., Kors, N. & Kraal, G. Macrophage subset repopulation in the spleen: differential kinetics after liposome-mediated elimination. J. Leukoc. Biol. 45, 97–104 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Korf, H. et al. Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J. Clin. Invest. 119, 1626–1637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Furth, R. & Cohn, Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Jenkins, S.J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Furth, R. Diesselhoff-den Dulk, M.M. Dual origin of mouse spleen macrophages. J. Exp. Med. 160, 1273–1283 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Kohyama, M. et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457, 318–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Swirski, F.K. The spatial and developmental relationships in the macrophage family. Arterioscler. Thromb. Vasc. Biol. 31, 1517–1522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Swirski, F.K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature 475, 524–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bensinger, S.J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Villablanca, E.J. et al. Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat. Med. 16, 98–105 (2009).

    Article  PubMed  CAS  Google Scholar 

  48. Peet, D.J. et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93, 693–704 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Mangelsdorf (University of Texas Southwestern Medical Center) for LXRα- and LXRβ-sufficient wild-type (Nr1h3+/+Nr1h2+/+) mice, LXRα-deficient (Nr1h3−/−) mice, LXRβ-deficient (Nr1h2−/−) mice and LXR-deficient (Nr1h3−/−Nr1h2−/−) mice; the Institut Clinique de la Souris for Nr1h3fl/fl mice; D. Kioussis (Medical Research Council) and S. Gonzalez (Centro Nacional de Investigaciones Cardiovasculares) for Vav-Cre mice; S. Gordon and M. Stacey (University of Oxford) for antibody to F4/80 (anti-F4/80) and anti-CD169; G. Randolph (Washington University St. Louis) for discussions and anti-TREML4 from the R. Steinman laboratory (Rockefeller University); M. Kosco-Vilbois (NovImmune) for anti-FDC-M1 and anti-FDC-M2; J. Collins and T. Willson (GlaxoSmithKline) for the synthetic ligands of LXR (GW3965) and retinoid X receptor (LG268); N. Ruddle, C. Glass, N. Spann, A. Chawla, G. Lemke, D. Hume, L. Hedrick, A. Lazarus and L. Bosca for comments; and Servicio Microscopia Electronica (University of Las Palmas de Gran Canaria) for electron microscopy. Supported by the Spanish Ministry of Research and Innovation (SAF2008-00057 to A.C.), the Ministry of Economy and Competitiveness (SAF2011-29244 to A.C. and SAF2009-11037 to A.H.), Framework Programme 7 of the European Union (International Reintegration Grant IRG246655 to A.H.), the Howard Hughes Medical Institute (P.T.), the US National Institutes of Health (HL-066088 and HL-030568 to P.T.), Subprograma Ramón y Cajal (RYC-2007-00697 to A.H.), Formación de Personal Investigador (BES-2010-032828 to M.C.-A. and BES-2009-012191 to I.H.H.) and Universidad Las Palmas de Gran Canaria (J.V.d.l.R.).

Author information

Authors and Affiliations

Authors

Contributions

N.A.-G., J.A.G., G.G. and M.D. designed and did experiments and analyzed data; J.V.d.l.R., I.H.H., M.C.-A., F.L., C.T. and S.B. did experiments; C.H., P.C.L., M.A., S.A., T.M., S.L., A.L.C., P.T. and A.H. provided reagents and intellectual input and analyzed or interpreted data; N.A.-G. and A.H. contributed to the writing of the manuscript; and A.C. supervised the project, designed and did experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Antonio Castrillo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 1626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

A-Gonzalez, N., Guillen, J., Gallardo, G. et al. The nuclear receptor LXRα controls the functional specialization of splenic macrophages. Nat Immunol 14, 831–839 (2013). https://doi.org/10.1038/ni.2622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing