Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Matching cellular dimensions with molecular sizes

An Erratum to this article was published on 21 January 2014

This article has been updated

Abstract

This Commentary discusses the spatial perception of receptors and their nanoscale organization at the surface of the lymphocyte membrane.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Size comparison of a textbook model of a B cell, an antibody molecule and the human body.
Figure 2: Aerial view of Central Park in New York City (from http://www.alamy.com) and its correspondence to the size of the surface of a B cell.
Figure 3: Comparison of a membrane-bound antibody in one diffraction-limited spot and a person on the infield of a baseball field.

Change history

  • 22 August 2013

    In the version of this article originally posted online, the units in the text referring to Figure 1a were incorrect. The correct unit is "μm" and the correct text is "the receptor depicted would measure about 3 μm, compared with a resting B lymphocyte, with an average diameter of about 7 μm." The error has been corrected in this file as of 22 August 2013.

References

  1. Blanco, R. & Alarcon, B. Front Immunol 3, 115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schamel, W.W. & Alarcon, B. Immunol. Rev. 251, 13–20 (2013).

    Article  PubMed  Google Scholar 

  3. Wilson, B.S., Pfeiffer, J.R., Surviladze, Z., Gaudet, E.A. & Oliver, J.M. J. Cell Biol. 154, 645–658 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lillemeier, B.F., Pfeiffer, J.R., Surviladze, Z., Wilson, B.S. & Davis, M.M. Proc. Natl. Acad. Sci. USA 103, 18992–18997 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lillemeier, B.F. et al. Nat. Immunol. 11, 90–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Mattila, P.K. et al. Immunity 38, 461–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Stephens, D.J. & Allan, V.J. Science 300, 82–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Campi, G., Varma, R. & Dustin, M.L. J. Exp. Med. 202, 1031–1036 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yokosuka, T. et al. Nat. Immunol. 6, 1253–1262 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Seminario, M.C. & Bunnell, S.C. Immunol. Rev. 221, 90–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Mueller, N.S., Wedlich-Soldner, R. & Spira, F. Mol. Membr. Biol. 29, 186–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Ziólkowska, N.E., Christiano, R. & Walther, T.C. Trends Cell Biol. 22, 151–158 (2012).

    Article  PubMed  Google Scholar 

  13. Pescovitz, M.D. Am. J. Transplant. 6, 859–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Mendelsohn, J. & Baselga, J. Oncogene 19, 6550–6565 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Davis, R.E. et al. Nature 463, 88–92 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dühren-von Minden, M. et al. Nature 489, 309–312 (2012).

    Article  PubMed  Google Scholar 

  17. Metzger, H. J. Immunol. 149, 1477–1487 (1992).

    CAS  PubMed  Google Scholar 

  18. Reth, M., Wienands, J. & Schamel, W.W. Immunol. Rev. 176, 10–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Reth, M. Trends Immunol. 22, 356–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, J. & Reth, M. Nature 467, 465–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, J. & Reth, M. FEBS Lett. 584, 4872–4877 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Kasuboski, J.M., Sigal, Y.J., Joens, M.S., Lillemeier, B.F. & Fitzpatrick, J.A. in Current Protocols in Cytometry (eds., Robinson, J.P. et al.) Ch. 2, Unit 2, 17 (Wiley, 2012).

    Google Scholar 

  23. Kamiyama, D. & Huang, B. Dev. Cell 23, 1103–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McDonald, K.L. J. Microsc. 235, 273–281 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Leuchowius, K.J., Weibrecht, I. & Soderberg, O. in Current Protocols in Cytometry (eds., Robinson, J.P. et al.) Ch. 9, Unit 9, 36 (Wiley, 2011).

    Google Scholar 

  26. Murphy, K.M. in Janeway's Immunobiology 8th edn. (Garland Science, 2011).

    Google Scholar 

Download references

Acknowledgements

I thank my colleagues for support; P. Nielsen and L. Leclercq for critical reading of the manuscript; and J. Yang for the calculations and figures. Supported by the Excellence Initiative of the German Federal and State Governments (EXC 294) and Deutsche Forschungsgemeinschaft (SFB746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Reth.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reth, M. Matching cellular dimensions with molecular sizes. Nat Immunol 14, 765–767 (2013). https://doi.org/10.1038/ni.2621

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing