Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways

Subjects

A Retraction to this article was published on 18 September 2014

Abstract

Natural T helper 17 (nTH17) cells are a population of interleukin 17 (IL-17)-producing cells that acquire effector function in the thymus during development. Here we demonstrate that the serine/threonine kinase Akt has a critical role in regulating nTH17 cell development. Although Akt and the downstream mTORC1–ARNT–HIFα axis were required for generation of inducible TH17 (iTH17) cells, nTH17 cells developed independently of mTORC1. In contrast, mTORC2 and inhibition of Foxo proteins were critical for development of nTH17 cells. Moreover, distinct isoforms of Akt controlled the generation of TH17 cell subsets, as deletion of Akt2, but not of Akt1, led to defective generation of iTH17 cells. These findings define mechanisms regulating nTH17 cell development and reveal previously unknown roles of Akt and mTOR in shaping subsets of T cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Akt regulates development of both nTH17 and iTH17 cells.
Figure 2: ARNT and mTORC1 regulate iTH17 but not nTH17 cell development.
Figure 3: mTORC2 is required for nTH17 cell development.
Figure 4: Foxo proteins regulate nTH17 cell development.
Figure 5: Isoform-specific deletion of Akt2 affects iTH17 cell differentiation.
Figure 6: Akt2 regulates iTH17 and iTreg cells in a cell-intrinsic manner.

Similar content being viewed by others

References

  1. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, J.S., Smith-Garvin, J.E., Koretzky, G.A. & Jordan, M.S. The requirements for natural Th17 cell development are distinct from those of conventional Th17 cells. J. Exp. Med. 208, 2201–2207 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marks, B.R. et al. Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nat. Immunol. 10, 1125–1132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kane, L.P. & Weiss, A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol. Rev. 192, 7–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Laplante, M. & Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci. 122, 3589–3594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Guertin, D.A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859–871 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Jacinto, E. et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Powell, J.D., Pollizzi, K.N., Heikamp, E.B. & Horton, M.R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delgoffe, G.M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delgoffe, G.M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743–753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Juntilla, M.M., Wofford, J.A., Birnbaum, M.J., Rathmell, J.C. & Koretzky, G.A. Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc. Natl. Acad. Sci. USA 104, 12105–12110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mao, C. et al. Unequal contribution of Akt isoforms in the double-negative to double-positive thymocyte transition. J. Immunol. 178, 5443–5453 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Rathmell, J.C., Elstrom, R.L., Cinalli, R.M. & Thompson, C.B. Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur. J. Immunol. 33, 2223–2232 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wan, Q. et al. Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. J. Exp. Med. 208, 1875–1887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi, L.Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dang, E.V. et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bruick, R.K. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 17, 2614–2623 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Quintana, F.J. et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, K. et al. Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia. J. Exp. Med. 209, 713–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 11, 618–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Harada, Y. et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 207, 1381–1391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McManus, E.J. et al. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J. 24, 1571–1583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dummler, B. & Hemmings, B.A. Physiological roles of PKB/Akt isoforms in development and disease. Biochem. Soc. Trans. 35, 231–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez, E. & McGraw, T.E. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8, 2502–2508 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728–1731 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kurebayashi, Y. et al. PI3K-Akt-mTORC1–S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORγ. Cell Rep. 1, 360–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Powolny-Budnicka, I. et al. RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in gammadelta T cells. Immunity 34, 364–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. van der Vos, K.E. & Coffer, P.J. The extending network of FOXO transcriptional target genes. Antioxid. Redox Signal. 14, 579–592 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Brunet, A. et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol. Cell Biol. 21, 952–965 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beurel, E., Yeh, W.I., Michalek, S.M., Harrington, L.E. & Jope, R.S. Glycogen synthase kinase-3 is an early determinant in the differentiation of pathogenic Th17 cells. J. Immunol. 186, 1391–1398 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Gulen, M.F. et al. Inactivation of the enzyme GSK3alpha by the kinase IKKi promotes AKT-mTOR signaling pathway that mediates interleukin-1-induced Th17 cell maintenance. Immunity 37, 800–812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walker, K.S. et al. Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem. J. 331, 299–308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, Z.Z. et al. Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Mol. Cell Biol. 25, 10407–10418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bae, S.S., Cho, H., Mu, J. & Birnbaum, M.J. Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. J. Biol. Chem. 278, 49530–49536 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, J., Tang, H., Hay, N., Xu, J. & Ye, R.D. Akt isoforms differentially regulate neutrophil functions. Blood 115, 4237–4246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez, E. & McGraw, T.E. Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc. Natl. Acad. Sci. USA 106, 7004–7009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, G.L. et al. Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. J. Biol. Chem. 281, 36443–36453 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Lazorchak, A.S. et al. Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol. Cell 39, 433–443 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cosmi, L. et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med. 205, 1903–1916 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leavens, K.F., Easton, R.M., Shulman, G.I., Previs, S.F. & Birnbaum, M.J. Akt2 is required for hepatic lipid accumulation in models of insulin resistance. Cell Metab. 10, 405–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elson, D.A., Ryan, H.E., Snow, J.W., Johnson, R. & Arbeit, J.M. Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 60, 6189–6195 (2000).

    CAS  PubMed  Google Scholar 

  47. Gruber, M. et al. Acute postnatal ablation of Hif-2alpha results in anemia. Proc. Natl. Acad. Sci. USA 104, 2301–2306 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tomita, S., Sinal, C.J., Yim, S.H. & Gonzalez, F.J. Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1alpha. Mol. Endocrinol. 14, 1674–1681 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Stiles (University of Southern California) for tissue from Akt1−/− mice; members of the Stem Cell and Xenotransplantation Core facility of the University of Pennsylvania for assistance with obtaining previously collected and de-identified human fetal thymic tissue; B. Monks for invaluable technical assistance and animal husbandry; L. Dipilato (University of Pennsylvania) for Akt inhibitors and helpful suggestions; S. Carty and T. Kambayashi for critically reading the manuscript; J. Stadanlick for editorial assistance; and members of the Koretzky and Jordan laboratories for helpful discussions. This work was supported by grants from US National Institutes of Health R01 DK56886 (M.J.B.), 5K01AR52802 (M.S.J.) and R37GM053256 (G.A.K.).

Author information

Authors and Affiliations

Authors

Contributions

J.S.K. designed the research, did experiments and wrote the manuscript; T.S., L.B.B. and M.G. performed experiments; A.T.W., K.N.P. and J.D.P. provided the Rhebfl/fl CD4-Cre and Rictorfl/fl CD4-Cre tissue; N.S. and B.L.K. provided the Arntfl/fl Vav1-Cre tissue; C.T.L. and M.O.L. provided the Foxo1ΔTFoxo3fl/fl CD4-Cre tissue; W.H. and J.C.R. provided the myr-Akt tissue; M.J.B. provided Akt1−/− and Akt2−/− mice and helpful suggestions; and M.S.J. and G.A.K. oversaw research and helped write the manuscript.

Corresponding authors

Correspondence to Martha S Jordan or Gary A Koretzky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 1546 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Sklarz, T., Banks, L. et al. Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nat Immunol 14, 611–618 (2013). https://doi.org/10.1038/ni.2607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing