Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation

Abstract

Uncontrolled activation of tumor necrosis factor receptor–associated factor (TRAF) proteins may result in profound tissue injury by linking surface signals to cytokine release. Here we show that a ubiquitin E3 ligase component, Fbxo3, potently stimulates cytokine secretion from human inflammatory cells by destabilizing a sentinel TRAF inhibitor, Fbxl2. Fbxo3 and TRAF protein in circulation positively correlated with cytokine responses in subjects with sepsis, and we identified a polymorphism in human Fbxo3, with one variant being hypofunctional. A small-molecule inhibitor targeting Fbxo3 was sufficient to lessen severity of cytokine-driven inflammation in several mouse disease models. These studies identified a pathway of innate immunity that may be useful to detect subjects with altered immune responses during critical illness or provide a basis for therapeutic intervention targeting TRAF protein abundance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fbxl2 interacts with and targets TRAFs for polyubiquitination.
Figure 2: Fbxl2 is phosphorylated and targeted by the SCF E3 ligase subunit Fbxo3.
Figure 3: Fbxo3 contains a naturally occurring polymorphism at Val221.
Figure 4: Fbxo3(V221I) is a loss-of-function polymorphism of Fbxo3 in vitro.
Figure 5: Fbxo3 knockdown ameliorates Pseudomonas-induced lung injury.
Figure 6: F box and TRAF proteins in subjects with sepsis.
Figure 7: Fbxo3 inhibitor BC-1215 lowers bacterial-induced inflammation.
Figure 8: Molecular regulation of proinflammatory cytokines mediated by F box proteins.

Similar content being viewed by others

References

  1. Inoue, J. et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adaptor proteins that mediate cytokine signaling. Exp. Cell Res. 254, 14–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Xu, L.G., Li, L.Y. & Shu, H.B. TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J. Biol. Chem. 279, 17278–17282 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez, S.E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. London, N.R. et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci. Transl. Med. 2, 23ra19 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Harrison, C. Sepsis: calming the cytokine storm. Nat. Rev. Drug Discov. 9, 360–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Lutgens, E. et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J. Exp. Med. 207, 391–404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu, L.J. et al. Suppression of tumor necrosis factor receptor associated factor (TRAF)-2 attenuates the proinflammatory and proliferative effect of aggregated IgG on rat renal mesangial cells. Cytokine 49, 201–208 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Yamashita, M. et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol. Cell 31, 918–924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lamothe, B. et al. The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL. J. Biol. Chem. 283, 24871–24880 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ha, H., Han, D. & Choi, Y. TRAF-mediated TNFR-family signaling. Curr. Protoc. Immunol. 11, Unit 11 9D (2009).

    Google Scholar 

  11. Tanaka, Y. et al. c-Cbl-dependent monoubiquitination and lysosomal degradation of gp130. Mol. Cell Biol. 28, 4805–4818 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hochstrasser, M. Biochemistry. All in the ubiquitin family. Science 289, 563–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Tyers, M. & Willems, A.R. One ring to rule a superfamily of E3 ubiquitin ligases. Science 284, 603–604 (1999).

    Article  Google Scholar 

  14. Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739–751 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Jin, J. et al. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18, 2573–2580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cenciarelli, C. et al. Identification of a family of human F-box proteins. Curr. Biol. 9, 1177–1179 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, B.B., Coon, T.A., Glasser, J.R. & Mallampalli, R.K. Calmodulin antagonizes a calcium-activated SCF ubiquitin E3 ligase subunit, FBXL2, to regulate surfactant homeostasis. Mol. Cell Biol. 31, 1905–1920 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, B.B. et al. F box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood 119, 3132–3141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, B.B., Glasser, J.R., Coon, T.A. & Mallampalli, R.K. F-box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest. Oncogene 31, 2566–2579 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, B.B., Glasser, J.R., Coon, T.A. & Mallampalli, R.K. FBXL2 is a ubiquitin E3 ligase subunit that triggers mitotic arrest. Cell Cycle 10, 3487–3494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shima, Y. et al. PML activates transcription by protecting HIPK2 and p300 from SCFFbx3-mediated degradation. Mol. Cell Biol. 28, 7126–7138 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levy, M.M. et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 31, 1250–1256 (2003).

    Article  PubMed  Google Scholar 

  24. Hildebrand, J.M. et al. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol. Rev. 244, 55–74 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishida, T.K. et al. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc. Natl. Acad. Sci. USA 93, 9437–9442 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat. Immunol. 9, 1364–1370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tseng, P.H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat. Immunol. 11, 70–75 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Xie, P., Stunz, L.L., Larison, K.D., Yang, B. & Bishop, G.A. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 27, 253–267 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. van Eyndhoven, W.G., Gamper, C.J., Cho, E., Mackus, W.J. & Lederman, S. TRAF-3 mRNA splice-deletion variants encode isoforms that induce NF-kappaB activation. Mol. Immunol. 36, 647–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Habelhah, H. Emerging complexity of protein ubiquitination in the NF-kappaB pathway. Genes Cancer 1, 735–747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, S. et al. Ubiquitin ligase Smurf1 targets TRAF family proteins for ubiquitination and degradation. Mol. Cell Biochem. 338, 11–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Nakhaei, P. et al. The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog. 5, e1000650 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Skaar, J.R., D'Angiolella, V., Pagan, J.K. & Pagano, M. SnapShot: F Box Proteins II. Cell 137, 1358 (2009).

    Article  PubMed  CAS  Google Scholar 

  34. Bashir, T., Dorrello, N.V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428, 190–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Galan, J.M. & Peter, M. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc. Natl. Acad. Sci. USA 96, 9124–9129 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chin, K.H. et al. Preparation, crystallization and preliminary X-ray analysis of XC2382, an ApaG protein of unknown structure from Xanthomonas campestris. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61, 700–702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ilyin, G.P., Rialland, M., Pigeon, C. & Guguen-Guillouzo, C. cDNA cloning and expression analysis of new members of the mammalian F-box protein family. Genomics 67, 40–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, L., Rodriguez-Belmonte, E.M., Mazloum, N., Xie, B. & Lee, M.Y. Identification of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase delta and proliferating cell nuclear antigen. J. Biol. Chem. 278, 10041–10047 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, J. et al. Novel mutations in ubiquitin-specific protease 26 gene might cause spermatogenesis impairment and male infertility. Asian J. Androl. 9, 809–814 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Month, S.R. et al. Analysis of 5′ flanking regions of the gamma globin genes from major African haplotype backgrounds associated with sickle cell disease. J. Clin. Invest. 85, 364–370 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Geva, A. et al. Hemoglobin Jamaica plain–a sickling hemoglobin with reduced oxygen affinity. N. Engl. J. Med. 351, 1532–1538 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Dodge, J.A. & Burton, L. Letter: Heterozygote advantage in cystic fibrosis. Lancet 1, 572–573 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. Ebong, S.J. et al. Immunopathologic responses to non-lethal sepsis. Shock 12, 118–126 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Lagneaux and S. Barge for assistance with studies. This material is based upon work supported, in part, by the US Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory Research and Development. This work was supported by a Merit Review Award from the US Department of Veterans Affairs and National Institutes of Health R01 grants HL096376, HL097376, HL081784, HL068135 and HL098174 (to R.K.M.), HL116472 (to B.B.C.), HL01916 (to Y.Z.) and P50HL084948 (F.C.S.), American Heart Association awards 12SDG9050005 (to J.Z.) and 12SDG12040330 (to C.Z.), and American Heart Association Grant-in-Aid 12GRNT11820019 (B.J.M.). The contents presented do not represent the views of the Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

R.K.M. and B.B.C. jointly oversaw the studies. B.B.C. designed the study, performed experiments, analyzed the data and wrote the manuscript; T.A.C., J.R.G., J.Z, Y.Z. and C.Z. performed experiments and assisted with animal experiments; B.J.M., B.E., F.C.S. and Y.Z. assisted with human studies. R.K.M. revised the manuscript and directed the study.

Corresponding authors

Correspondence to Bill B Chen or Rama K Mallampalli.

Ethics declarations

Competing interests

A provisional patent application (US 61/657,423) covering Fbxo3 inhibitors and additional modifications was filed jointly through the United States Department of Veterans Affairs and the University of Pittsburgh.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–7 (PDF 4085 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Coon, T., Glasser, J. et al. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation. Nat Immunol 14, 470–479 (2013). https://doi.org/10.1038/ni.2565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing