Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Fishing for mammalian paradigms in the teleost immune system

Abstract

Recent years have witnessed a renaissance in the study of fish immune systems. Such studies have greatly expanded the knowledge of the evolution and diversification of vertebrate immune systems. Several findings in those studies have overturned old paradigms about the immune system and led to the discovery of novel aspects of mammalian immunity. Here I focus on how findings pertaining to immunity in teleost (bony) fish have led to major new insights about mammalian B cell function in innate and adaptive immunity. Additionally, I illustrate how the discovery of the most ancient mucosal immunoglobulin described thus far will help resolve unsettled paradigms of mammalian mucosal immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical roles of phagocytic B-1 cells in antibody secretion and cytokine production after phagocytosis of microbes in a BCR-independent manner.
Figure 2: Hypothetical roles of phagocytic B-1 cells in antibody secretion and cytokine production after phagocytosis of apoptotic bodies.

Similar content being viewed by others

References

  1. Hoffmann, J. Antifungal defense in Drosophila. Nat. Immunol. 8, 543–545 (2007).

    CAS  PubMed  Google Scholar 

  2. Kaufmann, S.H. Immunology's foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat. Immunol. 9, 705–712 (2008).

    CAS  PubMed  Google Scholar 

  3. Magnadóttir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 20, 137–151 (2006).

    PubMed  Google Scholar 

  4. Magor, B.G. & Magor, K.E. Evolution of effectors and receptors of innate immunity. Dev. Comp. Immunol. 25, 651–682 (2001).

    CAS  PubMed  Google Scholar 

  5. Flajnik, M.F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    CAS  PubMed  Google Scholar 

  6. Zapata, A. & Amemiya, C.T. Phylogeny of lower vertebrates and their immunological structures. Curr. Top. Microbiol. Immunol. 248, 67–107 (2000).

    CAS  PubMed  Google Scholar 

  7. Salinas, I., Zhang, Y.A. & Sunyer, J.O. Mucosal immunoglobulins and B cells of teleost fish. Dev. Comp. Immunol. 35, 1346–1365 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vasta, G.R. et al. Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. Dev. Comp. Immunol. 35, 1388–1399 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoder, J.A. & Litman, G.W. The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 63, 123–141 (2011).

    CAS  PubMed  Google Scholar 

  10. Sunyer, J.O., Zarkadis, I.K. & Lambris, J.D. Complement diversity: a mechanism for generating immune diversity? Immunol. Today 19, 519–523 (1998).

    CAS  PubMed  Google Scholar 

  11. Danilova, N., Bussmann, J., Jekosch, K. & Steiner, L.A. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat. Immunol. 6, 295–302 (2005).

    CAS  PubMed  Google Scholar 

  12. Hansen, J.D., Landis, E.D. & Phillips, R.B. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. Proc. Natl. Acad. Sci. USA 102, 6919–6924 (2005).

    CAS  PubMed  Google Scholar 

  13. Sunyer, J.O. (ed.) Special issue on teleost fish immunology. Dev. Comp. Immunol 35, 1193–1400 (2011).

    Google Scholar 

  14. Neumann, N.F., Stafford, J.L., Barreda, D., Ainsworth, A.J. & Belosevic, M. Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev. Comp. Immunol. 25, 807–825 (2001).

    CAS  PubMed  Google Scholar 

  15. Rabinovitch, M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol. 5, 85–87 (1995).

    CAS  PubMed  Google Scholar 

  16. Wu, Y. et al. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J. Immunol. 183, 5622–5629 (2009).

    CAS  PubMed  Google Scholar 

  17. Ochando, J.C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat. Immunol. 7, 652–662 (2006).

    CAS  PubMed  Google Scholar 

  18. Li, J. et al. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat. Immunol. 7, 1116–1124 (2006).

    CAS  PubMed  Google Scholar 

  19. Øverland, H.S., Pettersen, E.F., Ronneseth, A. & Wergeland, H.I. Phagocytosis by B-cells and neutrophils in Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol. 28, 193–204 (2009).

    PubMed  Google Scholar 

  20. Zimmerman, L.M., Vogel, L.A., Edwards, K.A. & Bowden, R.M. Phagocytic B cells in a reptile. Biol. Lett. 6, 270–273 (2010).

    PubMed  Google Scholar 

  21. Parra, D. et al. Pivotal Advance: Peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. J. Leukoc. Biol. 91, 525–536 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao, X.M. et al. A novel function of murine B1 cells: Active phagocytic and microbicidal abilities. Eur. J. Immunol 42, 982–992 (2012).

    CAS  PubMed  Google Scholar 

  23. Nakashima, M. et al. Pivotal Advance: characterization of mouse liver phagocytic B cells in innate immunity. J. Leukoc. Biol. 91, 537–546 (2012).

    CAS  PubMed  Google Scholar 

  24. Herzenberg, L.A., Kantor, A.B. & Herzenberg, L.A. Layered evolution in the immune system. A model for the ontogeny and development of multiple lymphocyte lineages. Ann. NY Acad. Sci. 651, 1–9 (1992).

    CAS  PubMed  Google Scholar 

  25. Casali, P. & Schettino, E.W. Structure and function of natural antibodies. Curr. Top. Microbiol. Immunol. 210, 167–179 (1996).

    CAS  PubMed  Google Scholar 

  26. Zhou, Z.H. et al. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1, 51–61 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Murakami, M. et al. Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse. J. Exp. Med. 180, 111–121 (1994).

    CAS  PubMed  Google Scholar 

  28. Ha, S.A. et al. Regulation of B1 cell migration by signals through Toll-like receptors. J. Exp. Med. 203, 2541–2550 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Viau, M. & Zouali, M. B-lymphocytes, innate immunity, and autoimmunity. Clin. Immunol. 114, 17–26 (2005).

    CAS  PubMed  Google Scholar 

  30. Fritz, J.H. et al. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature 481, 199–203 (2012).

    CAS  Google Scholar 

  31. Itakura, A. et al. An hour after immunization peritoneal B-1 cells are activated to migrate to lymphoid organs where within 1 day they produce IgM antibodies that initiate elicitation of contact sensitivity. J. Immunol. 175, 7170–7178 (2005).

    CAS  PubMed  Google Scholar 

  32. Rodriguez-Manzanet, R. et al. T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc. Natl. Acad. Sci. USA 107, 8706–8711 (2010).

    CAS  PubMed  Google Scholar 

  33. Boes, M. et al. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl. Acad. Sci. USA 97, 1184–1189 (2000).

    CAS  PubMed  Google Scholar 

  34. Ehrenstein, M.R. & Notley, C.A. The importance of natural IgM: scavenger, protector and regulator. Nat. Rev. Immunol. 10, 778–786 (2010).

    CAS  PubMed  Google Scholar 

  35. Chen, Y., Park, Y.B., Patel, E. & Silverman, G.J. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J. Immunol. 182, 6031–6043 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinman, R.M., Turley, S., Mellman, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 (1999).

    CAS  PubMed  Google Scholar 

  38. Henson, P.M. Dampening inflammation. Nat. Immunol. 6, 1179–1181 (2005).

    CAS  PubMed  Google Scholar 

  39. Lund, F.E. & Randall, T.D. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat. Rev. Immunol. 10, 236–247 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Barr, T.A., Brown, S., Ryan, G., Zhao, J. & Gray, D. TLR-mediated stimulation of APC: distinct cytokine responses of B cells and dendritic cells. Eur. J. Immunol. 37, 3040–3053 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mizoguchi, A. & Bhan, A.K. A case for regulatory B cells. J. Immunol. 176, 705–710 (2006).

    CAS  PubMed  Google Scholar 

  42. Hoehlig, K. et al. Immune regulation by B cells and antibodies a view towards the clinic. Adv. Immunol. 98, 1–38 (2008).

    CAS  PubMed  Google Scholar 

  43. Morris, D.L. & Rothstein, T.L. Abnormal transcription factor induction through the surface immunoglobulin M receptor of B-1 lymphocytes. J. Exp. Med. 177, 857–861 (1993).

    CAS  PubMed  Google Scholar 

  44. Haas, K.M., Poe, J.C., Steeber, D.A. & Tedder, T.F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23, 7–18 (2005).

    CAS  PubMed  Google Scholar 

  45. Gil-Cruz, C. et al. The porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b cell antibody response. Proc. Natl. Acad. Sci. USA 106, 9803–9808 (2009).

    CAS  PubMed  Google Scholar 

  46. Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11, 34–46 (2011).

    CAS  PubMed  Google Scholar 

  47. Hastings, W.D., Tumang, J.R., Behrens, T.W. & Rothstein, T.L. Peritoneal B-2 cells comprise a distinct B-2 cell population with B-1b-like characteristics. Eur. J. Immunol. 36, 1114–1123 (2006).

    CAS  PubMed  Google Scholar 

  48. Griffin, D.O., Holodick, N.E. & Rothstein, T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J. Exp. Med. 208, 67–80 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Y.A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11, 827–835 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Macpherson, A.J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    CAS  Google Scholar 

  51. Suzuki, K., Ha, S.A., Tsuji, M. & Fagarasan, S. Intestinal IgA synthesis: a primitive form of adaptive immunity that regulates microbial communities in the gut. Semin. Immunol. 19, 127–135 (2007).

    CAS  PubMed  Google Scholar 

  52. Cerutti, A., Chen, K. & Chorny, A. Immunoglobulin responses at the mucosal interface. Annu. Rev. Immunol. 29, 273–293 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kang, H.S. et al. Signaling via LTbetaR on the lamina propria stromal cells of the gut is required for IgA production. Nat. Immunol. 3, 576–582 (2002).

    CAS  PubMed  Google Scholar 

  54. Macpherson, A.J., McCoy, K.D., Johansen, F.E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    CAS  Google Scholar 

  55. Rawls, J.F., Samuel, B.S. & Gordon, J.I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 101, 4596–4601 (2004).

    CAS  PubMed  Google Scholar 

  56. Kanther, M. & Rawls, J.F. Host-microbe interactions in the developing zebrafish. Curr. Opin. Immunol. 22, 10–19 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Boehm, T. Design principles of adaptive immune systems. Nat. Rev. Immunol. 11, 307–317 (2011).

    CAS  PubMed  Google Scholar 

  58. Litman, G.W. & Cooper, M.D. Why study the evolution of immunity? Nat. Immunol. 8, 547–548 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Warr, G.W. The adaptive immune system of fish. Dev. Biol. Stand. 90, 15–21 (1997).

    CAS  PubMed  Google Scholar 

  60. Solem, S.T. & Stenvik, J. Antibody repertoire development in teleosts-a review with emphasis on salmonids and Gadus morhua L. Dev. Comp. Immunol. 30, 57–76 (2006).

    CAS  PubMed  Google Scholar 

  61. Cain, K.D., Jones, D.R. & Raison, R.L. Antibody-antigen kinetics following immunization of rainbow trout (Oncorhynchus mykiss) with a T-cell dependent antigen. Dev. Comp. Immunol. 26, 181–190 (2002).

    CAS  PubMed  Google Scholar 

  62. Cain, K.D., Jones, D.R. & Raison, R.L. Characterisation of mucosal and systemic immune responses in rainbow trout (Oncorhynchus mykiss) using surface plasmon resonance. Fish Shellfish Immunol. 10, 651–666 (2000).

    CAS  PubMed  Google Scholar 

  63. Maki, J.L. & Dickerson, H.W. Systemic and cutaneous mucus antibody responses of channel catfish immunized against the protozoan parasite Ichthyophthirius multifiliis. Clin. Diagn. Lab. Immunol. 10, 876–881 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaattari, S., Evans, D. & Klemer, J. Varied redox forms of teleost IgM: an alternative to isotypic diversity? Immunol. Rev. 166, 133–142 (1998).

    CAS  PubMed  Google Scholar 

  65. Ye, J., Kaattari, I. & Kaattari, S. Plasmablasts and plasma cells: reconsidering teleost immune system organization. Dev. Comp. Immunol. 35, 1273–1281 (2011).

    CAS  PubMed  Google Scholar 

  66. Kaattari, S.L., Zhang, H.L., Khor, I.W., Kaattari, I.M. & Shapiro, D.A. Affinity maturation in trout: clonal dominance of high affinity antibodies late in the immune response. Dev. Comp. Immunol. 26, 191–200 (2002).

    CAS  PubMed  Google Scholar 

  67. Edholm, E.S., Bengten, E. & Wilson, M. Insights into the function of IgD. Dev. Comp. Immunol. 35, 1309–1316 (2011).

    CAS  PubMed  Google Scholar 

  68. Ramirez-Gomez, F. et al. Discovery and characterization of secretory IgD in rainbow trout: secretory IgD is produced through a novel splicing mechanism. J. Immunol. 188, 1341–1349 (2012).

    CAS  PubMed  Google Scholar 

  69. Edholm, E.S. et al. Identification of two IgD+ B cell populations in channel catfish, Ictalurus punctatus. J. Immunol. 185, 4082–4094 (2010).

    CAS  PubMed  Google Scholar 

  70. Chen, K. et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat. Immunol. 10, 889–898 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ye, J., Bromage, E.S. & Kaattari, S.L. The strength of B cell interaction with antigen determines the degree of IgM polymerization. J. Immunol. 184, 844–850 (2010).

    CAS  PubMed  Google Scholar 

  72. Saunders, H.L., Oko, A.L., Scott, A.N., Fan, C.W. & Magor, B.G. The cellular context of AID expressing cells in fish lymphoid tissues. Dev. Comp. Immunol. 34, 669–676 (2010).

    CAS  PubMed  Google Scholar 

  73. Cannon, J.P. et al. A bony fish immunological receptor of the NITR multigene family mediates allogeneic recognition. Immunity 29, 228–237 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank L. King and D. Parra for critical reading and editing of the manuscript. Supported by the National Science Foundation (NSF-MCB-0719599), the US National Institutes of Health (R01GM085207-01), the US Department of Agriculture (USDA-NRI 2006-01619 and USDA-NRI 2007-01719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Oriol Sunyer.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunyer, J. Fishing for mammalian paradigms in the teleost immune system. Nat Immunol 14, 320–326 (2013). https://doi.org/10.1038/ni.2549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing