Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MicroRNAs as mediators of viral evasion of the immune system

Abstract

Cellular microRNAs serve key roles in the post-transcriptional regulation of almost every cellular gene-regulatory pathway, and it therefore is not surprising that viruses have found ways to subvert this process. Several viruses encode microRNAs that directly downregulate the expression of factors of the innate immune system, including proteins involved in promoting apoptosis and recruiting effector cells of the immune system. Viruses have also evolved the ability to downregulate or upregulate the expression of specific cellular miRNAs to enhance their replication. This Review provides an overview of the present knowledge of the complex interactions of viruses with the microRNA machinery of cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome structure of the human herpesviruses EBV, KSHV and HCMV.
Figure 2: Sequence alignment of host miR-155 with viral mRNA mimics.

Similar content being viewed by others

References

  1. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cullen, B.R. Transcription and processing of human microRNA precursors. Mol. Cell 16, 861–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Zeng, Y., Yi, R. & Cullen, B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  PubMed  Google Scholar 

  9. Su, H., Trombly, M.I., Chen, J. & Wang, X. Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev. 23, 304–317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peters, L. & Meister, G. Argonaute proteins: mediators of RNA silencing. Mol. Cell 26, 611–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doench, J.G. & Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Skalsky, R.L. et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 8, e1002484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Riley, K.J. et al. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 31, 2207–2221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haecker, I. et al. Ago HITS-CLIP expands understanding of Kaposi's sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog. 8, e1002884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gottwein, E. et al. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10, 515–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004). This was the first report of viral miRNA.

    Article  CAS  PubMed  Google Scholar 

  25. Grundhoff, A. & Sullivan, C.S. Virus-encoded microRNAs. Virology 411, 325–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Backes, S. et al. Degradation of host microRNAs by poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe 12, 200–210 (2012). This paper describes a unique viral mechanism that globally degrades host cellular miRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai, X., Li, G., Laimins, L.A. & Cullen, B.R. Human papillomavirus genotype 31 does not express detectable microRNA levels during latent or productive virus replication. J. Virol. 80, 10890–10893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, J. & Cullen, B.R. Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J. Virol. 81, 12218–12226 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Umbach, J.L., Yen, H.L., Poon, L.L. & Cullen, B.R. Influenza A virus expresses high levels of an unusual class of small viral leader RNAs in infected cells. mBio 1, e00204–00210 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cai, X. et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, e23 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhu, J.Y. et al. Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J. Virol. 83, 3333–3341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feederle, R. et al. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog. 7, e1001294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seto, E. et al. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog. 6, e1001063 (2010). Refs. 33 and 34 provided the first demonstration of an important role for viral miRNA in the virus-mediated transformation of human cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 102, 5570–5575 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, Y.T. & Sullivan, C.S. Expanding the role of Drosha to the regulation of viral gene expression. Proc. Natl. Acad. Sci. USA 108, 11229–11234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stark, T.J., Arnold, J.D., Spector, D.H. & Yeo, G.W. High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J. Virol. 86, 226–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dölken, L. et al. Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog. 6, e1001150 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Choy, E.Y. et al. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 205, 2551–2560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nikitin, P.A. & Luftig, M.A. At a crossroads: human DNA tumor viruses and the host DNA damage response. Future Virol. 6, 813–830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marquitz, A.R., Mathur, A., Nam, C.S. & Raab-Traub, N. The Epstein-Barr Virus BART microRNAs target the pro-apoptotic protein Bim. Virology 412, 392–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Nachmani, D., Stern-Ginossar, N., Sarid, R. & Mandelboim, O. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5, 376–385 (2009). This paper showed that three different herpesviruses, KSHV, EBV and HCMV, all use distinct miRNAs to target the same immune factor.

    Article  CAS  PubMed  Google Scholar 

  43. Stern-Ginossar, N. et al. Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Umbach, J.L. et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454, 780–783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barth, S. et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 36, 666–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Abend, J.R., Uldrick, T. & Ziegelbauer, J.M. Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi's sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J. Virol. 84, 12139–12151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abend, J.R. et al. Kaposi's sarcoma-associated herpesvirus microRNAs target IRAK1 and MYD88, two components of the Toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression. J. Virol. 86, 11663–11674 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lei, X. et al. A Kaposi's sarcoma-associated herpesvirus microRNA and its variants target the transforming growth factor β pathway to promote cell survival. J. Virol. 86, 11698–11711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suffert, G. et al. Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis. PLoS Pathog. 7, e1002405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gottwein, E. & Cullen, B.R. A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J. Virol. 84, 5229–5237 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, S. et al. Human cytomegalovirus microRNA miR-US4–1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1. Nat. Immunol. 12, 984–991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, Y. et al. Human cytomegalovirus clinical strain-specific microRNA miR-UL148D targets the human chemokine RANTES during infection. PLoS Pathog. 8, e1002577 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kincaid, R.P., Burke, J.M. & Sullivan, C.S. An RNA virus microRNA that mimics a B-cell oncomiR. Proc. Natl. Acad. Sci. USA 109, 3077–3082 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thai, T.H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. O'Connell, R.M., Taganov, K.D., Boldin, M.P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 104, 1604–1609 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O'Connell, R.M. et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J. Exp. Med. 205, 585–594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eis, P.S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627–3632 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Gottwein, E. et al. A viral microRNA functions as an ortholog of cellular miR-155. Nature 450, 1096–1099 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Skalsky, R.L. et al. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J. Virol. 81, 12836–12845 (2007).Refs. 61 and 62 reported the first example of a viral miRNA mimic of a host cellular miRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Boss, I.W. et al. A KSHV encoded ortholog of miR-155 induces human splenic B-cell expansion in NOD/LtSz-scid IL2Rγnull mice. J. Virol. 85, 9877–9886 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao, Y. et al. Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek's disease lymphomas. PLoS Pathog. 7, e1001305 (2011). This is the first report documenting a critical role for viral miRNA in cell transformation in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ho, B.C. et al. Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9, 58–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Yin, Q. et al. MicroRNA-155 is an Epstein-Barr Virus induced gene that modulates Epstein Barr virus regulated gene expression pathways. J. Virol. 82, 5295–5306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Forte, E. et al. The Epstein-Barr virus (EBV)-induced tumor suppressor microRNA MiR-34a is growth promoting in EBV-infected B cells. J. Virol. 86, 6889–6898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu, F. et al. Epstein-Barr virus-induced miR-155 attenuates NF-κB signaling and stabilizes latent virus persistence. J. Virol. 82, 10436–10443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gatto, G. et al. Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-κB pathway. Nucleic Acids Res. 36, 6608–6619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Linnstaedt, S.D., Gottwein, E., Skalsky, R.L., Luftig, M.A. & Cullen, B.R. Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. J. Virol. 84, 11670–11678 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577–1581 (2005). This is the first report showing that a host cellular miRNA is critical for viral replication.

    Article  CAS  PubMed  Google Scholar 

  72. Machlin, E.S., Sarnow, P. & Sagan, S.M. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc. Natl. Acad. Sci. USA 108, 3193–3198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cazalla, D., Yario, T. & Steitz, J.A. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buck, A.H. et al. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16, 307–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Andersson, M.G. et al. Suppression of RNA interference by adenovirus virus-associated RNA. J. Virol. 79, 9556–9565 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lu, S. & Cullen, B.R. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol. 78, 12868–12876 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kelly, E.J., Hadac, E.M., Greiner, S. & Russell, S.J. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat. Med. 14, 1278–1283 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Ylösmäki, E. et al. Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific MicroRNA. J. Virol. 82, 11009–11015 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Barnes, D., Kunitomi, M., Vignuzzi, M., Saksela, K. & Andino, R. Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe 4, 239–248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Otsuka, M. et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27, 123–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Davis, M., Sagan, S.M., Pezacki, J.P., Evans, D.J. & Simmonds, P. Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J. Virol. 82, 11824–11836 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Watts, J.M. et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460, 711–716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Humphreys, D.T., Westman, B.J., Martin, D.I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–16966 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lecellier, C.H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Jurak, I. et al. Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J. Virol. 84, 4659–4672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang, S., Patel, A. & Krause, P.R. Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J. Virol. 83, 1433–1442 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Umbach, J.L., Nagel, M.A., Cohrs, R.J., Gilden, D.H. & Cullen, B.R. Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J. Virol. 83, 10677–10683 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tuddenham, L., Jung, J.S., Chane-Woon-Ming, B., Dolken, L. & Pfeffer, S. Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J. Virol. 86, 1638–1649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the US National Institutes of Health (R01-AI0973376, R01-AI067968 and R01-DA030086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan R Cullen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullen, B. MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 14, 205–210 (2013). https://doi.org/10.1038/ni.2537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing