Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II–restricted cytotoxic T lymphocytes

Abstract

TCRαβ thymocytes differentiate into either CD8αβ+ cytotoxic T lymphocytes or CD4+ helper T cells. This functional dichotomy is controlled by key transcription factors, including the helper T cell master regulator ThPOK, which suppresses the cytolytic program in major histocompatibility complex (MHC) class II–restricted CD4+ thymocytes. ThPOK continues to repress genes of the CD8 lineage in mature CD4+ T cells, even as they differentiate into effector helper T cell subsets. Here we found that the helper T cell fate was not fixed and that mature, antigen-stimulated CD4+ T cells terminated expression of the gene encoding ThPOK and reactivated genes of the CD8 lineage. This unexpected plasticity resulted in the post-thymic termination of the helper T cell program and the functional differentiation of distinct MHC class II–restricted CD4+ cytotoxic T lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some mature CD4+ T cells do not maintain ThPOK expression in the periphery.
Figure 2: Mature ThPOK CD4+ T cells are the progeny of ThPOK-expressing thymocytes.
Figure 3: ThPOK CD4+ effector cells lost ThPOK as mature cells in the periphery.
Figure 4: Activated CD4+ helper T cells that lose ThPOK expression differentiate into CTLs.
Figure 5: The Thpok silencer forms the switch that terminates Thpok expression in mature CD4+ T cells.
Figure 6: The ThPOK loss and reprogramming of CD4+ CTLs is an antigen-driven process in vivo.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Aliahmad, P., Kadavallore, A., de la Torre, B., Kappes, D. & Kaye, J. TOX is required for development of the CD4 T cell lineage gene program. J. Immunol. 187, 5931–5940 (2011).

    CAS  PubMed  Google Scholar 

  2. Hernández-Hoyos, G., Anderson, M.K., Wang, C., Rothenberg, E.V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003).

    PubMed  Google Scholar 

  3. Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    CAS  PubMed  Google Scholar 

  4. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    CAS  PubMed  Google Scholar 

  5. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    CAS  PubMed  Google Scholar 

  6. Wang, L. et al. The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity 29, 876–887 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    CAS  PubMed  Google Scholar 

  8. Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA 100, 7731–7736 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Appay, V. et al. Characterization of CD4+ CTLs ex vivo. J. Immunol. 168, 5954–5958 (2002).

    CAS  PubMed  Google Scholar 

  10. Appay, V. The physiological role of cytotoxic CD4+ T-cells: the holy grail? Clin. Exp. Immunol. 138, 10–13 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown, D.M. Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cell. Immunol. 262, 89–95 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Marshall, N.B. & Swain, S.L. Cytotoxic CD4 T cells in antiviral immunity. J. Biomed. Biotechnol. 10.1155/2011/954602 (2011).

  13. Guy-Grand, D., Malassis-Seris, M., Briottet, C. & Vassalli, P. Cytotoxic differentiation of mouse gut thymodependent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforin and granzyme transcripts, and cytoplasmic granules. J. Exp. Med. 173, 1549–1552 (1991).

    CAS  PubMed  Google Scholar 

  14. Sydora, B.C. et al. Intestinal intraepithelial lymphocytes are activated and cytolytic but do not proliferate as well as other T cells in response to mitogenic signals. J. Immunol. 150, 2179–2191 (1993).

    CAS  PubMed  Google Scholar 

  15. Sasahara, T., Tamauchi, H., Ikewaki, N. & Kubota, K. Unique properties of a cytotoxic CD4+CD8+ intraepithelial T-cell line established from the mouse intestinal epithelium. Microbiol. Immunol. 38, 191–199 (1994).

    CAS  PubMed  Google Scholar 

  16. Nascimbeni, M., Shin, E.C., Chiriboga, L., Kleiner, D.E. & Rehermann, B. Peripheral CD4+CD8+ T cells are differentiated effector memory cells with antiviral functions. Blood 104, 478–486 (2004).

    CAS  PubMed  Google Scholar 

  17. Strutt, T.M., McKinstry, K.K. & Swain, S.L. Functionally diverse subsets in CD4 T cell responses against influenza. J. Clin. Immunol. 29, 145–150 (2009).

    PubMed  Google Scholar 

  18. DePaolo, R.W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220–224 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Muroi, S. et al. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nat. Immunol. 9, 1113–1121 (2008).

    CAS  PubMed  Google Scholar 

  20. Cheroutre, H. Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu. Rev. Immunol. 22, 217–246 (2004).

    CAS  PubMed  Google Scholar 

  21. Burkett, M.W., Shafer-Weaver, K.A., Strobl, S., Baseler, M. & Malyguine, A. A novel flow cytometric assay for evaluating cell-mediated cytotoxicity. J. Immunother. 28, 396–402 (2005).

    PubMed  Google Scholar 

  22. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    CAS  PubMed  Google Scholar 

  23. He, X., Park, K. & Kappes, D.J. The role of ThPOK in control of CD4/CD8 lineage commitment. Annu. Rev. Immunol. 28, 295–320 (2010).

    CAS  PubMed  Google Scholar 

  24. Ellmeier, W., Sunshine, M.J., Losos, K., Hatam, F. & Littman, D.R. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 7, 537–547 (1997).

    CAS  PubMed  Google Scholar 

  25. Kennedy, J. et al. A molecular analysis of NKT cells: identification of a class-I restricted T cell-associated molecule (CRTAM). J. Leukoc. Biol. 67, 725–734 (2000).

    CAS  PubMed  Google Scholar 

  26. Boles, K.S., Barchet, W., Diacovo, T., Cella, M. & Colonna, M. The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood 106, 779–786 (2005).

    CAS  PubMed  Google Scholar 

  27. Boles, K.S., Stepp, S.E., Bennett, M., Kumar, V. & Mathew, P.A. 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol. Rev. 181, 234–249 (2001).

    CAS  PubMed  Google Scholar 

  28. Sakaguchi, S. et al. The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nat. Immunol. 11, 442–448 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Park, J.H. et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheroutre, H. & Lambolez, F. Doubting the TCR coreceptor function of CD8αα. Immunity 28, 149–159 (2008).

    CAS  PubMed  Google Scholar 

  32. Mention, J.J. et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125, 730–745 (2003).

    CAS  PubMed  Google Scholar 

  33. Ebert, E.C. Interleukin 15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology 115, 1439–1445 (1998).

    CAS  PubMed  Google Scholar 

  34. Hirose, K. et al. Interleukin-15 may be responsible for early activation of intestinal intraepithelial lymphocytes after oral infection with Listeria monocytogenes in rats. Infect. Immun. 66, 5677–5683 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, W., Young, J.D. & Liu, C.C. Interleukin-15 induces the expression of mRNAs of cytolytic mediators and augments cytotoxic activities in primary murine lymphocytes. Cell. Immunol. 174, 54–62 (1996).

    CAS  PubMed  Google Scholar 

  36. Abadie, V., Discepolo, V. & Jabri, B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin. Immunopathol. 34, 551–566 (2012).

    CAS  PubMed  Google Scholar 

  37. Gangadharan, D. et al. Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. Immunity 25, 631–641 (2006).

    CAS  PubMed  Google Scholar 

  38. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hershberg, R.M. et al. Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J. Clin. Invest. 102, 792–803 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Khanna, R. et al. Class I processing-defective Burkitt's lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. J. Immunol. 158, 3619–3625 (1997).

    CAS  PubMed  Google Scholar 

  41. Ko, H.S., Fu, S.M., Winchester, R.J., Yu, D.T. & Kunkel, H.G. Ia determinants on stimulated human T lymphocytes. Occurrence on mitogen- and antigen-activated T cells. J. Exp. Med. 150, 246–255 (1979).

    CAS  PubMed  Google Scholar 

  42. Alcami, A. & Koszinowski, U.H. Viral mechanisms of immune evasion. Immunol. Today 21, 447–455 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. McInnes, I.B. & Gracie, J.A. Interleukin-15: a new cytokine target for the treatment of inflammatory diseases. Curr. Opin. Pharmacol. 4, 392–397 (2004).

    CAS  PubMed  Google Scholar 

  44. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  45. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    CAS  PubMed  Google Scholar 

  46. LeBlanc, P.M. et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 3, 146–157 (2008).

    CAS  PubMed  Google Scholar 

  47. Kimura, M. et al. Regulation of Th2 cell differentiation by mel-18, a mammalian polycomb group gene. Immunity 15, 275–287 (2001).

    CAS  PubMed  Google Scholar 

  48. Betts, M.R. et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281, 65–78 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Larange and I. Vicente-Suarez for discussions and critical reading of the manuscript; M. Cheroutre for contributions in conceiving of the project; Y. Wang-Zhu for preparing tetramers of the thymic leukemia antigen and breeding Rag1−/− mice; C. Kim and K. Van Gunst for cell sorting; D. Littman (New York University) for E8I-deficient mice; and D. Kappes (Fox Chase Cancer Center) for Thpok vectors. Supported by the US National Institutes of Health (R01 AI050265 and DP1 OD006433 to H.C.; F32 DK082249 to J.-W.S.; and P01 DK46763 to M.K. and H.C.), the Research Center for Allergy and Immunology (H.C. and I.T.), the Japan Society for the Promotion of Science (I.T.), Ter Meulen fund (F.v.W.) and the Crohn's & Colitis Foundation of America (D.M.). This is manuscript 1263 from the La Jolla Institute for Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Contributions

H.C., I.T., M.K., D.M. and M.M.H. conceived of the project; M.M.H., D.M. and F.v.W. generated the phenotypic and functional data; I.T., S.M., Y.N. and C.M. generated the data on fate mapping and deletion of the Thpok silencer and did the ChIP assays; R.S. transfected cells; Y.H. provided the data on IL-7R-deficient mice; B.S.R., M.D. and A.A. generated the gene arrays; G.K., F.L. and C.J.L. transferred cells and analyzed mice; J.-W.S. and D.M. infected mice with citrobacter; K.A. and K.H. reconstituted germ-free mice; S.S. generated the data on the role of MAZR; Y.P. analyzed Myd88−/− mice; P.W., D.M., F.v.W., B.S.R. and H.C. analyzed the gene-array data; T.N. and W.E. provided expertise; M.K. provided conceptual advice and helped with data analysis and writing of the manuscript; I.T. and H.C. generated concepts, designed experiments, analyzed data and wrote the manuscript; and all authors contributed to the writing of the manuscript and provided advice.

Corresponding authors

Correspondence to Ichiro Taniuchi or Hilde Cheroutre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1981 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mucida, D., Husain, M., Muroi, S. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II–restricted cytotoxic T lymphocytes. Nat Immunol 14, 281–289 (2013). https://doi.org/10.1038/ni.2523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing