Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach

Abstract

The innate immune system senses viral DNA that enters mammalian cells, or in aberrant situations self-DNA, and triggers type I interferon production. Here we present an integrative approach that combines quantitative proteomics, genomics and small molecule perturbations to identify genes involved in this pathway. We silenced 809 candidate genes, measured the response to dsDNA and connected resulting hits with the known signaling network. We identified ABCF1 as a critical protein that associates with dsDNA and the DNA-sensing components HMGB2 and IFI204. We also found that CDC37 regulates the stability of the signaling molecule TBK1 and that chemical inhibition of the CDC37-HSP90 interaction and several other pathway regulators potently modulates the innate immune response to DNA and retroviral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of a candidate gene set by quantitative proteomics and curation.
Figure 2: RNAi screen defines functional components of the ISD-sensing pathway.
Figure 3: Validation of Abcf1 as a regulator of the ISD-sensing response.
Figure 4: Small molecule inhibitors modulate the ISD-sensing response.
Figure 5: ABCF1 interacts with HMGB2, IFI204 and SET complex.
Figure 6: Inhibition of identified regulators by RNAi or small molecules modulates the innate immune response to retroviral infection.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Barbalat, R., Ewald, S.E., Mouchess, M.L. & Barton, G.M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29, 185–214 (2011).

    CAS  PubMed  Google Scholar 

  2. Altfeld, M., Fadda, L., Frleta, D. & Bhardwaj, N. DCs and NK cells: critical effectors in the immune response to HIV-1. Nat. Rev. Immunol. 11, 176–186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yan, N., Regalado-Magdos, A.D., Stiggelbout, B., Lee-Kirsch, M.A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee-Kirsch, M.A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    CAS  PubMed  Google Scholar 

  7. Lee-Kirsch, M.A. et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med. (Berl.) 85, 531–537 (2007).

    CAS  Google Scholar 

  8. Rotem, Z., Cox, R.A. & Isaacs, A. Inhibition of virus multiplication by foreign nucleic acid. Nature 197, 564–566 (1963).

    CAS  PubMed  Google Scholar 

  9. Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    CAS  PubMed  Google Scholar 

  11. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    CAS  PubMed  Google Scholar 

  12. Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    CAS  PubMed  Google Scholar 

  13. Ishii, K.J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    CAS  PubMed  Google Scholar 

  14. Ishikawa, H. & Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanaka, Y. & Chen, Z.J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009).

    CAS  PubMed  Google Scholar 

  19. Li, S., Wang, L., Berman, M., Kong, Y.Y. & Dorf, M.E. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity 35, 426–440 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010).

    CAS  PubMed  Google Scholar 

  21. Nijman, S.M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    CAS  PubMed  Google Scholar 

  22. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    CAS  PubMed  Google Scholar 

  23. Roberts, T.L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    CAS  PubMed  Google Scholar 

  24. Yan, N., Cherepanov, P., Daigle, J.E., Engelman, A. & Lieberman, J. The SET complex acts as a barrier to autointegration of HIV-1. PLoS Pathog. 5, e1000327 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Crow, Y.J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    CAS  PubMed  Google Scholar 

  26. Rice, G.I. et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Laguette, N. & Benkirane, M. How SAMHD1 changes our view of viral restriction. Trends Immunol. 33, 26–33 (2012).

    CAS  PubMed  Google Scholar 

  28. Okabe, Y., Sano, T. & Nagata, S. Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 460, 520–524 (2009).

    CAS  PubMed  Google Scholar 

  29. Paytubi, S. et al. ABC50 promotes translation initiation in mammalian cells. J. Biol. Chem. 284, 24061–24073 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rozenblatt-Rosen, O. et al. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491–495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, T. et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol. Cancer Ther. 7, 162–170 (2008).

    CAS  PubMed  Google Scholar 

  32. Gray, P.J. Jr., Prince, T., Cheng, J., Stevenson, M.A. & Calderwood, S.K. Targeting the oncogene and kinome chaperone CDC37. Nat. Rev. Cancer 8, 491–495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouwmeester, T. et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat. Cell Biol. 6, 97–105 (2004).

    CAS  PubMed  Google Scholar 

  34. Myers, M.P. et al. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J. Biol. Chem. 276, 47771–47774 (2001).

    CAS  PubMed  Google Scholar 

  35. Pan, H. et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434, 767–772 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chowdhury, D. & Lieberman, J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26, 389–420 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, Y.G., Lindahl, T. & Barnes, D.E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    CAS  PubMed  Google Scholar 

  38. Yan, N., O′Day, E., Wheeler, L.A., Engelman, A. & Lieberman, J. HIV DNA is heavily uracilated, which protects it from autointegration. Proc. Natl. Acad. Sci. USA 108, 9244–9249 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishii, K.J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    CAS  PubMed  Google Scholar 

  40. Shimp, S.K. III et al. HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-kappaB pathways. Inflamm. Res. 61, 521–533 (2012).

    CAS  PubMed  Google Scholar 

  41. Corson, T.W. & Crews, C.M. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell 130, 769–774 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Klaman, L.D. et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 20, 5479–5489 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Samaniego, L.A., Neiderhiser, L. & DeLuca, N.A. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol. 72, 3307–3320 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    PubMed  Google Scholar 

  46. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    CAS  PubMed  Google Scholar 

  47. Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    PubMed  Google Scholar 

  48. Pichlmair, A. et al. Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 487, 486–490 (2012).

    CAS  PubMed  Google Scholar 

  49. Cristea, I.M. et al. Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J. Virol. 84, 7803–7814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Y.J. Crow for AGS patient fibroblasts and control cells; T. Lindahl for Trex1−/− MEFs and wild-type control MEFs; D. Sabatini and D. Kwiatkowski for p53−/− MEFs; N.A. DeLuca for HSV-1 d109 virus; C. Shamu (Institute of Chemistry and Cell Biology at Harvard Medical School) for the siRNA library and expert advice; The RNAi Consortium at the Broad Institute for assistance with siRNA screening; J. Qiao for assistance with mass spectrometry; M. Rooney and C. Ye for advice about statistical analyses; D. Londono for help with microscopy; J. Kagan, N. Haining, L. Glimcher and M. Brenner for valuable discussions; and W.F. Pendergraft III and other members of the Hacohen laboratory for critical review of the manuscript. This work was supported by the US National Human Genome Research Institute grant HG005062 and US National Institutes of Health Director's New Innovator award DP2OD002230 (N.H.). M.N.L. is supported by a National Institutes of Health Medical Scientist Training Program fellowship; F.D. by a GlaxoSmithKline Immune Disease Institute fellowship; and J.L. by National Institute of Allergy and Infectious Diseases grant AI102816.

Author information

Authors and Affiliations

Authors

Contributions

M.N.L., M.R., S.-E.O., P.M., W.L., F.D. and J.S. performed experiments and analyzed data; A.-C.V. analyzed data; J.G.D., M.H.O. and I.K. provided reagents; D.M.K., J.L. and S.A.C. supervised experiments; N.H. designed and supervised the study. M.N.L. and N.H. wrote the manuscript.

Corresponding author

Correspondence to Nir Hacohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2366 kb)

Supplementary Table 1

STING-interacting SILAC. (XLS 229 kb)

Supplementary Table 2

DNA-interacting SILAC. (XLS 187 kb)

Supplementary Table 3

siRNA screen. (XLS 160 kb)

Supplementary Table 4

ABCF1-interacting SILAC. (XLS 300 kb)

Supplementary Table 5

Sequences. (XLSX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Roy, M., Ong, SE. et al. Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach. Nat Immunol 14, 179–185 (2013). https://doi.org/10.1038/ni.2509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing