Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A DNA break– and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination

Abstract

The ability of activation-induced cytidine deaminase (AID) to efficiently mediate class-switch recombination (CSR) is dependent on its phosphorylation at Ser38; however, the trigger that induces AID phosphorylation and the mechanism by which phosphorylated AID drives CSR have not been elucidated. Here we found that phosphorylation of AID at Ser38 was induced by DNA breaks. Conversely, in the absence of AID phosphorylation, DNA breaks were not efficiently generated at switch (S) regions in the immunoglobulin heavy-chain locus (Igh), consistent with a failure of AID to interact with the endonuclease APE1. Additionally, deficiency in the DNA-damage sensor ATM impaired the phosphorylation of AID at Ser38 and the interaction of AID with APE1. Our results identify a positive feedback loop for the amplification of DNA breaks at S regions through the phosphorylation- and ATM-dependent interaction of AID with APE1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catalytically inactive AID bound to S regions is not efficiently phosphorylated.
Figure 2: Phosphorylation of AID at Ser38 is induced by DNA breaks.
Figure 3: AicdaS38A/S38A B cells have fewer DSBs.
Figure 4: AicdaS38A/S38A B cells have less colocalization of Igh with γ-H2AX foci.
Figure 5: AID interacts with APE1.
Figure 6: ATM is required for the phosphorylation of AID bound to S regions and the interaction of AID with APE1.

Similar content being viewed by others

References

  1. Stavnezer, J., Guikema, J.E. & Schrader, C.E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS  Google Scholar 

  3. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    CAS  PubMed  Google Scholar 

  4. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    CAS  PubMed  Google Scholar 

  5. Rada, C., Di Noia, J.M. & Neuberger, M.S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell 16, 163–171 (2004).

    CAS  PubMed  Google Scholar 

  6. Guikema, J.E. et al. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J. Exp. Med. 204, 3017–3026 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Masani, S., Han, L. & Yu, K. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol. Cell. Biol. 33, 1468–1473 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Iwasato, T., Arakawa, H., Shimizu, A., Honjo, T. & Yamagishi, H. Biased distribution of recombination sites within S regions upon immunoglobulin class switch recombination induced by transforming growth factor β and lipopolysaccharide. J. Exp. Med. 175, 1539–1546 (1992).

    CAS  PubMed  Google Scholar 

  9. Matsuoka, M., Yoshida, K., Maeda, T., Usuda, S. & Sakano, H. Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching. Cell 62, 135–142 (1990).

    CAS  PubMed  Google Scholar 

  10. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wuerffel, R.A., Du, J., Thompson, R.J. & Kenter, A.L. Ig Sγ3 DNA-specifc double strand breaks are induced in mitogen-activated B cells and are implicated in switch recombination. J. Immunol. 159, 4139–4144 (1997).

    CAS  PubMed  Google Scholar 

  12. Papavasiliou, F.N. & Schatz, D.G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109, S35–S44 (2002).

    CAS  PubMed  Google Scholar 

  13. Daniel, J.A. & Nussenzweig, A. The AID-induced DNA damage response in chromatin. Mol. Cell 50, 309–321 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vuong, B.Q. & Chaudhuri, J. Combinatorial mechanisms regulating AID-dependent DNA deamination: Interacting proteins and post-translational modifications. Semin. Immunol. 24, 264–272 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng, H.L. et al. Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc. Natl. Acad. Sci. USA 106, 2717–2722 (2009).

    CAS  PubMed  Google Scholar 

  16. McBride, K.M. et al. Regulation of class switch recombination and somatic mutation by AID phosphorylation. J. Exp. Med. 205, 2585–2594 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438, 508–511 (2005).

    CAS  PubMed  Google Scholar 

  18. Pasqualucci, L., Kitaura, Y., Gu, H. & Dalla-Favera, R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc. Natl. Acad. Sci. USA 103, 395–400 (2006).

    CAS  PubMed  Google Scholar 

  19. Vuong, B.Q. et al. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat. Immunol. 10, 420–426 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaudhuri, J., Khuong, C. & Alt, F.W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    CAS  PubMed  Google Scholar 

  21. Yamane, A. et al. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol. 12, 62–69 (2011).

    CAS  PubMed  Google Scholar 

  22. Yamane, A. et al. RPA accumulation during class switch recombination represents 5′-3′ DNA-end resection during the S-G2/M phase of the cell cycle. Cell Rep. 3, 138–147 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wold, M.S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997).

    CAS  PubMed  Google Scholar 

  24. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    CAS  PubMed  Google Scholar 

  25. Papavasiliou, F.N. & Schatz, D.G. The activation-induced deaminase functions in a postcleavage step of the somatic hypermutation process. J. Exp. Med. 195, 1193–1198 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schrader, C.E., Guikema, J.E., Linehan, E.K., Selsing, E. & Stavnezer, J. Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair. J. Immunol. 179, 6064–6071 (2007).

    CAS  PubMed  Google Scholar 

  27. Schrader, C.E., Linehan, E.K., Mochegova, S.N., Woodland, R.T. & Stavnezer, J. Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J. Exp. Med. 202, 561–568 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Maul, R.W. et al. Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nat. Immunol. 12, 70–76 (2011).

    CAS  PubMed  Google Scholar 

  29. Imai, K. et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol. 4, 1023–1028 (2003).

    CAS  PubMed  Google Scholar 

  30. Xanthoudakis, S., Smeyne, R.J., Wallace, J.D. & Curran, T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc. Natl. Acad. Sci. USA 93, 8919–8923 (1996).

    CAS  PubMed  Google Scholar 

  31. Schrader, C.E., Guikema, J.E., Wu, X. & Stavnezer, J. The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Phil. Trans. R. Soc. Lond. B 364, 645–652 (2009).

    CAS  Google Scholar 

  32. Rush, J.S., Fugmann, S.D. & Schatz, D.G. Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to Sm in immunoglobulin class switch recombination. Int. Immunol. 16, 549–557 (2004).

    CAS  PubMed  Google Scholar 

  33. Hasham, M.G. et al. Activation-induced cytidine deaminase-initiated off-target DNA breaks are detected and resolved during S phase. J. Immunol. 189, 2374–2382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, J.H. & Paull, T.T. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741–7748 (2007).

    CAS  PubMed  Google Scholar 

  35. Lumsden, J.M. et al. Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J. Exp. Med. 200, 1111–1121 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reina-San-Martin, B., Chen, H.T., Nussenzweig, A. & Nussenzweig, M.C. ATM is required for efficient recombination between immunoglobulin switch regions. J. Exp. Med. 200, 1103–1110 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).

    CAS  PubMed  Google Scholar 

  38. Ranjit, S. et al. AID binds cooperatively with UNG and Msh2-Msh6 to Ig switch regions dependent upon the AID C terminus. J. Immunol. 187, 2464–2475 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bensimon, A., Aebersold, R. & Shiloh, Y. Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett. 585, 1625–1639 (2011).

    CAS  PubMed  Google Scholar 

  40. Searle, J.S., Schollaert, K.L., Wilkins, B.J. & Sanchez, Y. The DNA damage checkpoint and PKA pathways converge on APC substrates and Cdc20 to regulate mitotic progression. Nat. Cell Biol. 6, 138–145 (2004).

    CAS  PubMed  Google Scholar 

  41. Liu, Y. et al. Interactions of human mismatch repair proteins MutSα and MutLα with proteins of the ATR-Chk1 pathway. J. Biol. Chem. 285, 5974–5982 (2010).

    CAS  PubMed  Google Scholar 

  42. Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell 21, 201–214 (2006).

    CAS  PubMed  Google Scholar 

  43. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    CAS  PubMed  Google Scholar 

  44. Guikema, J.E. et al. p53 represses class switch recombination to IgG2a through its antioxidant function. J. Immunol. 184, 6177–6187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Erzberger, J.P., Barsky, D., Scharer, O.D., Colvin, M.E. & Wilson, D.M. 3rd Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases. Nucleic Acids Res. 26, 2771–2778 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishiai, M., Sanchez, J.P., Amin, A.A., Murakami, Y. & Hurwitz, J. Purification, gene cloning, and reconstitution of the heterotrimeric single-stranded DNA-binding protein from Schizosaccharomyces pombe. J. Biol. Chem. 271, 20868–20878 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Hurwitz (Memorial Sloan-Kettering Cancer Center) for recombinant human RPA; members of the Chaudhuri laboratory, D. Sant' Angelo and L. Denzin for critically reviewing the manuscript and for discussions and suggestions; V. Bermudez and J. Hurwitz for help in purifying recombinant human RPA; J. Lange and S. Keeney (Memorial Sloan-Kettering Cancer Center) for Atm−/− mice; and D.M. Wilson III (US National Institutes of Health) for the plasmid for expression of human APE1. Supported by the US National Institutes of Health (RO1AI23283 and R21 AI099908 to J.S., 5 R01 CA138646-04 to K.D.M. and 1RO1AI072194 to J.C.) and the Starr Cancer Consortium (I4-A447 to J.C.).

Author information

Authors and Affiliations

Authors

Contributions

B.Q.V. and J.C. conceived of the study and wrote the paper; B.Q.V., K.H.-R., B.V., J.N.P. and U.N. did the ChIP experiments; B.Q.V., K.H.-R. and B.V. did the coimmunoprecipitation and in vitro binding experiments; A.J.U. and J.S. did the LM-PCR experiment and bred the Apex1+/−Apex2−/− mice; N.M.D. and K.D.M. did the immuno-FISH; X.G. and M.P.S. bred the Ung−/−Msh2−/− mice; and N.R., B.Q.V., K.H.-R. and L.N. bred and analyzed the Aicda−/−, Atm−/− and AicdaS38A/S38A mice.

Corresponding authors

Correspondence to Janet Stavnezer or Jayanta Chaudhuri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 905 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuong, B., Herrick-Reynolds, K., Vaidyanathan, B. et al. A DNA break– and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination. Nat Immunol 14, 1183–1189 (2013). https://doi.org/10.1038/ni.2732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing