Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB

Abstract

Several members of the NLR family of sensors activate innate immunity. In contrast, we found here that NLRC3 inhibited Toll-like receptor (TLR)-dependent activation of the transcription factor NF-κB by interacting with the TLR signaling adaptor TRAF6 to attenuate Lys63 (K63)-linked ubiquitination of TRAF6 and activation of NF-κB. We used bioinformatics to predict interactions between NLR and TRAF proteins, including interactions of TRAF with NLRC3. In vivo, macrophage expression of Nlrc3 mRNA was diminished by the administration of lipopolysaccharide (LPS) but was restored when cellular activation subsided. To assess biologic relevance, we generated Nlrc3−/− mice. LPS-treated Nlrc3−/− macrophages had more K63-ubiquitinated TRAF6, nuclear NF-κB and proinflammatory cytokines. Finally, LPS-treated Nlrc3−/− mice had more signs of inflammation. Thus, signaling via NLRC3 and TLR constitutes a negative feedback loop. Furthermore, prevalent NLR-TRAF interactions suggest the formation of a 'TRAFasome' complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NLRC3 inhibits MyD88- and TRAF6-dependent activation of NF-κB.
Figure 2: NLRC3 inhibits NF-κB by association with TRAF6.
Figure 3: NLRC3 promotes degradation of TRAF6 and prevents autoubiquitination of TRAF6.
Figure 4: Nlrc3−/− macrophages produce more proinflammatory cytokines in response to TLR agonists.
Figure 5: Nlrc3−/− macrophages produce more proinflammatory cytokines and TRAF6 in response to LPS.
Figure 6: Nlrc3−/− macrophages have more K63-linked ubiquitination of TRAF6 and activation of NF-κB.
Figure 7: Nlrc3−/− mice have a more severe reaction to sublethal challenge with LPS than do wild-type mice.

Similar content being viewed by others

References

  1. Davis, B.K., Wen, H. & Ting, J.P.-Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707–735 (2010).

    Article  Google Scholar 

  2. Martinon, F., Gaide, O., Pétrilli, V., Mayor, A. & Tschopp, J. NALP inflammasomes: a central role in innate immunity. Semin. Immunopathol. 29, 213–229 (2007).

    Article  CAS  Google Scholar 

  3. Lamkanfi, M. & Dixit, V.M. Modulation of inflammasome pathways by bacterial and viral pathogens. J. Immunol. 187, 597–602 (2011).

    Article  CAS  Google Scholar 

  4. Davis, B.K. et al. Cutting Edge: NLRC5-dependent activation of the inflammasome. J. Immunol. 186, 1333–1337 (2011).

    Article  CAS  Google Scholar 

  5. Bruey, J.M. et al. PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-κB and caspase-1 activation in macrophages. J. Biol. Chem. 279, 51897–51907 (2004).

    Article  CAS  Google Scholar 

  6. Khare, S. et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36, 464–476 (2012).

    Article  CAS  Google Scholar 

  7. Bauernfeind, F.G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  Google Scholar 

  8. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    Article  CAS  Google Scholar 

  9. Girardin, S.E. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  Google Scholar 

  10. Girardin, S.E. et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702–41708 (2003).

    Article  CAS  Google Scholar 

  11. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    Article  CAS  Google Scholar 

  12. Bertrand, M.J.M. et al. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30, 789–801 (2009).

    Article  CAS  Google Scholar 

  13. Strober, W., Murray, P.J., Kitani, A. & Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 6, 9–20 (2005).

    Article  Google Scholar 

  14. Abbott, D.W. et al. Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. Mol. Cell. Biol. 27, 6012–6025 (2007).

    Article  CAS  Google Scholar 

  15. Tao, M. et al. ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr. Biol. 19, 1255–1263 (2009).

    Article  CAS  Google Scholar 

  16. Ting, J.P.Y., Duncan, J.A. & Lei, Y. How the noninflammasome NLRs function in the innate immune system. Science 327, 286–290 (2010).

    Article  CAS  Google Scholar 

  17. Allen, I.C. et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 10.1016/j.immuni.2012.03.012 (2012).

  18. Zaki, M.H. et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20, 649–660 (2011).

    Article  CAS  Google Scholar 

  19. Moore, C.B. et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573–577 (2008).

    Article  CAS  Google Scholar 

  20. Allen, I.C. et al. NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-κB signaling pathways. Immunity 34, 854–865 (2011).

    Article  CAS  Google Scholar 

  21. Xia, X. et al. NLRX1 negatively regulates TLR-Induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 34, 843–853 (2011).

    Article  CAS  Google Scholar 

  22. Benko, S., Magalhaes, J.G., Philpott, D.J. & Girardin, S.E. NLRC5 limits the activation of inflammatory pathways. J. Immunol. 185, 1681–1691 (2010).

    Article  CAS  Google Scholar 

  23. Cui, J. et al. NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways. Cell 141, 483–496 (2010).

    Article  CAS  Google Scholar 

  24. Kumar, H. et al. NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections. J. Immunol. 186, 994–1000 (2011).

    Article  CAS  Google Scholar 

  25. Staehli, F. et al. NLRC5 deficiency selectively impairs MHC class I-dependent lymphocyte killing by cytotoxic T cells. J. Immunol. 188, 3820–3828 (2012).

    Article  CAS  Google Scholar 

  26. Tong, Y. et al. Enhanced TLR-induced NF-κB signaling and type I interferon responses in NLRC5 deficient mice. Cell Res. 22, 822–835 (2012).

    Article  CAS  Google Scholar 

  27. Rothe, M., Sarma, V., Dixit, V.M. & Goeddel, D.V. TRAF2-mediated activation of NF-κB by TNF receptor 2 and CD40. Science 269, 1424–1427 (1995).

    Article  CAS  Google Scholar 

  28. Nakano, H. et al. TRAF5, an activator of NF-κB and putative signal transducer for the lymphotoxin-β receptor. J. Biol. Chem. 271, 14661–14664 (1996).

    Article  CAS  Google Scholar 

  29. Hasegawa, M. et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J. 27, 373–383 (2008).

    Article  CAS  Google Scholar 

  30. Devin, A. et al. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12, 419–429 (2000).

    Article  CAS  Google Scholar 

  31. Conze, D.B., Wu, C.-J., Thomas, J.A., Landstrom, A. & Ashwell, J.D. Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and Toll-like receptor-mediated NF-κB activation. Mol. Cell. Biol. 28, 3538–3547 (2008).

    Article  CAS  Google Scholar 

  32. Lamothe, B. et al. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. J. Biol. Chem. 282, 4102–4112 (2006).

    Article  Google Scholar 

  33. Sebban, H., Yamaoka, S. & Courtois, G. Posttranslational modifications of NEMO and its partners in NF-κB signaling. Trends Cell Biol. 16, 569–577 (2006).

    Article  CAS  Google Scholar 

  34. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  Google Scholar 

  35. Kishimoto, K., Matsumoto, K. & Ninomiya-Tsuji, J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J. Biol. Chem. 275, 7359–7364 (2000).

    Article  CAS  Google Scholar 

  36. Bishop, G.A. The multifaceted roles of TRAFs in the regulation of B-cell function. Nat. Rev. Immunol. 4, 775–786 (2004).

    Article  CAS  Google Scholar 

  37. Lamothe, B. et al. The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL. J. Biol. Chem. 283, 24871–24880 (2008).

    Article  CAS  Google Scholar 

  38. Skaug, B., Jiang, X. & Chen, Z.J. The role of ubiquitin in NF-κB regulatory pathways. Annu. Rev. Biochem. 78, 769–796 (2009).

    Article  CAS  Google Scholar 

  39. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  Google Scholar 

  40. Heyninck, K. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-κB activation at the level of TRAF6. FEBS Lett. 442, 147–150 (1999).

    Article  CAS  Google Scholar 

  41. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  42. Brummelkamp, T.R., Nijman, S.M.B., Dirac, A.M.G. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  Google Scholar 

  43. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  Google Scholar 

  44. Conti, B.J. CATERPILLER 16.2 (CLR16.2), a novel NBD/LRR family member that negatively regulates T cell function. J. Biol. Chem. 280, 18375–18385 (2004).

    Article  Google Scholar 

  45. Horie, R. et al. A novel domain in the CD30 cytoplasmic tail mediates NFκB activation. Int. Immunol. 10, 203–210 (1998).

    Article  CAS  Google Scholar 

  46. Marinis, J.M., Homer, C.R., McDonald, C. & Abbott, D.W. A novel motif in the Crohn's disease susceptibility protein, NOD2, allows TRAF4 to down-regulate innate immune responses. J. Biol. Chem. 286, 1938–1950 (2010).

    Article  Google Scholar 

  47. Ye, H., Park, Y.C., Kreishman, M., Kieff, E. & Wu, H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol. Cell. 4, 321–330 (1999).

    Article  CAS  Google Scholar 

  48. Coornaert, B., Carpentier, I. & Beyaert, R. A20: central gatekeeper in inflammation and immunity. J. Biol. Chem. 284, 8217–8221 (2008).

    Article  Google Scholar 

  49. Sun, S.-C. Deubiquitylation and regulation of the immune response. Nat. Rev. Immunol. 8, 501–511 (2008).

    Article  CAS  Google Scholar 

  50. Taxman, D.J. et al. Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol. 6, 7 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Ghosh (Columbia University, New York) for hemagglutinin-tagged MyD88 and Flag-tagged IRAK; Y. Xiong (University of North Carolina) for plasmids encoding hemagglutinin-tagged K48-linked ubiquitin and K63-linked ubiquitin; A. Baldwin (University of North Carolina) for Flag-tagged IKKα; and R. Thresher (University of North Carolina) for the targeting vector pOS. Supported by the US National Institutes of Health (R37-AI029564, U54-AI057157, U19-AI1077437 and T32-AR007416).

Author information

Authors and Affiliations

Authors

Contributions

M.S. did most of the experiments; J.P.-Y.T. supervised the project; M.S. and J.P.-Y.T. prepared the manuscript; A.G.Z. and B.H.K. generated the Nlrc3−/− mouse; L.Z., H.W. and T.K.E. contributed to biochemical analysis; K.V.S. did confocal assays; B.K.D. helped in design and creation of NLRC3 site mutants; I.C.A. contributed to experimental design and execution of mouse studies; B.J.C. designed NLRC3 retroviral vectors; R.A.R. did bioinformatics analysis and contributed to biochemical analysis; and A.H.R., E.K.H. and Z.Y. contributed to characterization of the Nlrc3−/− mouse.

Corresponding author

Correspondence to Jenny P-Y Ting.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, M., Zimmermann, A., Roberts, R. et al. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nat Immunol 13, 823–831 (2012). https://doi.org/10.1038/ni.2378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing