Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin

Abstract

Langerhans cells (LCs) are epidermal dendritic cells with incompletely understood origins that associate with hair follicles for unknown reasons. Here we show that in response to external stress, mouse hair follicles recruited Gr-1hi monocyte-derived precursors of LCs whose epidermal entry was dependent on the chemokine receptors CCR2 and CCR6, whereas the chemokine receptor CCR8 inhibited the recruitment of LCs. Distinct hair-follicle regions had differences in their expression of ligands for CCR2 and CCR6. The isthmus expressed the chemokine CCL2; the infundibulum expressed the chemokine CCL20; and keratinocytes in the bulge produced the chemokine CCL8, which is the ligand for CCR8. Thus, distinct hair-follicle keratinocyte subpopulations promoted or inhibited repopulation with LCs via differences in chemokine production, a feature also noted in humans. Pre-LCs failed to enter hairless skin in mice or humans, which establishes hair follicles as portals for LCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MHCII+Lang cells of myeloid phenotype infiltrate epidermis depleted of LCs.
Figure 2: LysM-expressing precursors give rise to a subset of LCs.
Figure 3: Dependence of LCs and pre-LCs on chemokine receptors.
Figure 4: Pre-LCs repopulate the epidermis via hair follicles.
Figure 5: Hair-follicle keratinocyte subsets are the main source of chemokines that regulate the entry of LCs.
Figure 6: S1P1 expression identifies CCL8-producing suprabasal hair-follicle bulge cells.
Figure 7: Pre-LCs fail to populate hairless epidermis.
Figure 8: Chemokine expression in human hair follicles and LCs in hairless skin.

Similar content being viewed by others

References

  1. Cotsarelis, G., Sun, T.T. & Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  Google Scholar 

  2. Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 111, 3179–3188 (1998).

    CAS  PubMed  Google Scholar 

  3. Trempus, C.S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol. 120, 501–511 (2003).

    CAS  PubMed  Google Scholar 

  4. Christoph, T. et al. The human hair follicle immune system: cellular composition and immune privilege. Br. J. Dermatol. 142, 862–873 (2000).

    Article  CAS  Google Scholar 

  5. Meyer, K.C. et al. Evidence that the bulge region is a site of relative immune privilege in human hair follicles. Br. J. Dermatol. 159, 1077–1085 (2008).

    CAS  PubMed  Google Scholar 

  6. Hoek, R.M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).

    Article  CAS  Google Scholar 

  7. Stefanato, C.M. Histopathology of alopecia: a clinicopathological approach to diagnosis. Histopathology 56, 24–38 (2010).

    Article  Google Scholar 

  8. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135–1141 (2002).

    Article  CAS  Google Scholar 

  9. Borkowski, T.A., Nelson, A.J., Farr, A.G. & Udey, M.C. Expression of gp40, the murine homologue of human epithelial cell adhesion molecule (Ep-CAM), by murine dendritic cells. Eur. J. Immunol. 26, 110–114 (1996).

    Article  CAS  Google Scholar 

  10. Bursch, L.S. et al. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med. 204, 3147–3156 (2007).

    Article  CAS  Google Scholar 

  11. Nagao, K. et al. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc. Natl. Acad. Sci. USA 106, 3312–3317 (2009).

    Article  CAS  Google Scholar 

  12. Borkowski, T.A., Letterio, J.J., Farr, A.G. & Udey, M.C. A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184, 2417–2422 (1996).

    Article  CAS  Google Scholar 

  13. Kaplan, D.H. et al. Autocrine/paracrine TGFβ1 is required for the development of epidermal Langerhans cells. J. Exp. Med. 204, 2545–2552 (2007).

    Article  CAS  Google Scholar 

  14. Zahner, S.P. et al. Conditional deletion of TGF-βR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity. J. Immunol. 187, 5069–5076 (2011).

    Article  CAS  Google Scholar 

  15. Igyártó, B.Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).

    Article  Google Scholar 

  16. Ouchi, T. et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J. Exp. Med. 208, 2607–2613 (2011).

    Article  CAS  Google Scholar 

  17. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7, 265–273 (2006).

    Article  CAS  Google Scholar 

  18. Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206, 3089–3100 (2009).

    Article  CAS  Google Scholar 

  19. Mantovani, A., Bonecchi, R. & Locati, M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat. Rev. Immunol. 6, 907–918 (2006).

    Article  CAS  Google Scholar 

  20. Förster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  Google Scholar 

  21. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    Article  CAS  Google Scholar 

  22. Kabashima, K. et al. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171, 1249–1257 (2007).

    Article  CAS  Google Scholar 

  23. Merad, M. et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nat. Med. 10, 510–517 (2004).

    Article  CAS  Google Scholar 

  24. Bennett, C.L. et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 169, 569–576 (2005).

    Article  CAS  Google Scholar 

  25. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    Article  CAS  Google Scholar 

  26. Cheong, C. et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143, 416–429 (2011).

    Article  Google Scholar 

  27. Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R. & Förster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

    Article  CAS  Google Scholar 

  28. Kawamoto, S. et al. A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett. 470, 263–268 (2000).

    Article  CAS  Google Scholar 

  29. Mian, A. et al. Toxicity and adaptive immune response to intracellular transgenes delivered by helper-dependent vs. first generation adenoviral vectors. Mol. Genet. Metab. 84, 278–288 (2005).

    Article  CAS  Google Scholar 

  30. Jensen, U.B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell Sci. 121, 609–617 (2008).

    Article  CAS  Google Scholar 

  31. Nagao, K. et al. Abnormal placental development and early embryonic lethality in EpCAM-null mice. PLoS ONE 4, e8543 (2009).

    Article  Google Scholar 

  32. Nishimura, E.K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860 (2002).

    Article  CAS  Google Scholar 

  33. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  Google Scholar 

  34. Schwab, S.R. & Cyster, J.G. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301 (2007).

    Article  CAS  Google Scholar 

  35. Ishii, M. et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–528 (2009).

    Article  CAS  Google Scholar 

  36. Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961 (2000).

    Article  CAS  Google Scholar 

  37. Horiuchi, K. et al. Conditional inactivation of TACE by a Sox9 promoter leads to osteoporosis and increased granulopoiesis via dysregulation of IL-17 and G-CSF. J. Immunol. 182, 2093–2101 (2009).

    Article  CAS  Google Scholar 

  38. Kobayashi, T., Iwasaki, T., Amagai, M. & Ohyama, M. Canine follicle stem cell candidates reside in the bulge and share characteristic features with human bulge cells. J. Invest. Dermatol. 130, 1988–1995 (2010).

    Article  CAS  Google Scholar 

  39. Ghoreishi, M., Martinka, M. & Dutz, J.P. Type 1 interferon signature in the scalp lesions of alopecia areata. Br. J. Dermatol. 163, 57–62 (2010).

    CAS  PubMed  Google Scholar 

  40. Gilliam, A.C. et al. The human hair follicle: a reservoir of CD40+ B7-deficient Langerhans cells that repopulate epidermis after UVB exposure. J. Invest. Dermatol. 110, 422–427 (1998).

    Article  CAS  Google Scholar 

  41. Paus, R. et al. Generation and cyclic remodeling of the hair follicle immune system in mice. J. Invest. Dermatol. 111, 7–18 (1998).

    Article  CAS  Google Scholar 

  42. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351–1354 (2005).

    Article  CAS  Google Scholar 

  43. Clark, R.A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    Article  CAS  Google Scholar 

  44. Chensue, S.W. et al. Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J. Exp. Med. 193, 573–584 (2001).

    Article  CAS  Google Scholar 

  45. Hedrick, M.N. et al. CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J. Clin. Invest. 119, 2317–2329 (2009).

    Article  CAS  Google Scholar 

  46. Murai, M. et al. Peyer's patch is the essential site in initiating murine acute and lethal graft-versus-host reaction. Nat. Immunol. 4, 154–160 (2003).

    Article  CAS  Google Scholar 

  47. Morikawa, T. et al. Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc. Natl. Acad. Sci. USA 109, 1293–1298 (2012).

    Article  CAS  Google Scholar 

  48. Belsito, D.V., Baer, R.L., Schultz, J.M. & Thorbecke, G.J. Relative lack of systemic effects of mometasone furoate on Langerhans cells of mice after topical administration as compared with other glucocorticosteroids. J. Invest. Dermatol. 91, 219–223 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Eguchi and H. Ito for assistance, and M. Kajimura for assistance with multiphoton microscopy. Supported by the Japan Society for the Promotion of Science (K.N. and M.A.), The Kanae Foundation for the Promotion of Medical Science, and Japaneses Dermatological Association (K.N.), The Netherlands Organization for Scientific Research (B.E.C.) and the Intramural Research Program of the Center for Cancer Research of the National Cancer Institute (M.C.U.).

Author information

Authors and Affiliations

Authors

Contributions

K.N. conceived of and designed all experiments; K.N. and T.K. did experiments, with the assistance of K.Mo., T.A., D.Y.M., S.U., K.H., M.O., A.K. and Y.C.; B.E.C. provided Langerin-DTR mice; K.Ma. provided bone marrow from mice deficient in CCR1, CCR2 or CCR5 and Cx3cr1gfp/gfp mice; G.C.F. and S.A.L. provided bone marrow from CCR8-deficient mice; J.M.F. provided bone marrow from CCR6-deficient mice; H.T., K.K. and M.S. assisted with multiphoton intravital microscopy; K.Mo. assisted with the sorting of hair-follicle keratinocytes; M.C.U. and M.A. interpreted data and guided the project; and K.N. and M.C.U. wrote the manuscript.

Corresponding author

Correspondence to Keisuke Nagao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Table 1 (PDF 556 kb)

Supplementary Video 1

Multi-photon microscopy of DC recruitment to skin in vivo. (MOV 12159 kb)

Supplementary Video 2

Multi-photon microscopy of pre-LCs repopulation via HFs. (MOV 52721 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagao, K., Kobayashi, T., Moro, K. et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol 13, 744–752 (2012). https://doi.org/10.1038/ni.2353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing