Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clonal deletion and the fate of autoreactive thymocytes that survive negative selection

Abstract

Clonal deletion of autoreactive thymocytes is important for self-tolerance, but the intrathymic signals that induce clonal deletion have not been clearly identified. We now report that clonal deletion during negative selection required CD28-mediated costimulation of autoreactive thymocytes at the CD4+CD8lo intermediate stage of differentiation. Autoreactive thymocytes were prevented from undergoing clonal deletion by either a lack of CD28 costimulation or transgenic overexpression of the antiapoptotic factors Bcl-2 or Mcl-1, with surviving thymocytes differentiating into anergic CD4CD8 double-negative thymocytes positive for the T cell antigen receptor αβ subtype (TCRαβ) that 'preferentially' migrated to the intestine, where they re-expressed CD8α and were sequestered as CD8αα+ intraepithelial lymphocytes (IELs). Our study identifies costimulation by CD28 as the intrathymic signal required for clonal deletion and identifies CD8αα+ IELs as the developmental fate of autoreactive thymocytes that survive negative selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD28 costimulation–deficient mice have more TCRαβ+ DN thymocytes.
Figure 2: Effect of transgenes encoding Bcl-2 and Mcl-1 on the appearance of TCRαβ+ DN thymocytes.
Figure 3: Expression of Mtv-reactive Vβ+ TCRs in pre- and post-selection thymocyte subsets.
Figure 4: TCRαβ+ DN thymocytes are the progeny of DP thymocytes.
Figure 5: Effect of thymic selection on the expression of Mtv-reactive Vβ+ TCRs.
Figure 6: Developmentally diverted TCRαβ+ DN thymocytes migrate to the intestine, where they become CD8αα+ IELs.
Figure 7: Developmentally diverted TCRαβ+ DN thymocytes become CD8αα+ IELs.
Figure 8: Runx3 is required for the differentiation of TCRαβ+ DN thymocytes into developmentally diverted CD8αα+ IELs.

Similar content being viewed by others

References

  1. Singer, A., Adoro, S. & Park, J.H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Gascoigne, N.R. & Palmer, E. Signaling in thymic selection. Curr. Opin. Immunol. 23, 207–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCaughtry, T.M. & Hogquist, K.A. Central tolerance: what have we learned from mice? Semin. Immunopathol. 30, 399–409 (2008).

    Article  PubMed  Google Scholar 

  5. Kappler, J.W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Baldwin, T.A., Hogquist, K.A. & Jameson, S.C. The fourth way? Harnessing aggressive tendencies in the thymus. J. Immunol. 173, 6515–6520 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Laufer, T.M., DeKoning, J., Markowitz, J.S., Lo, D. & Glimcher, L.H. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383, 81–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Kishimoto, H. & Sprent, J. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185, 263–271 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kishimoto, H. & Sprent, J. Several different cell surface molecules control negative selection of medullary thymocytes. J. Exp. Med. 190, 65–73 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Punt, J.A., Havran, W., Abe, R., Sarin, A. & Singer, A. T cell receptor (TCR)-induced death of immature CD4+CD8+ thymocytes by two distinct mechanisms differing in their requirement for CD28 costimulation: implications for negative selection in the thymus. J. Exp. Med. 186, 1911–1922 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Punt, J.A., Osborne, B.A., Takahama, Y., Sharrow, S.O. & Singer, A. Negative selection of CD4+CD8+ thymocytes by T cell receptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J. Exp. Med. 179, 709–713 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. McKean, D.J. et al. Maturation versus death of developing double-positive thymocytes reflects competing effects on Bcl-2 expression and can be regulated by the intensity of CD28 costimulation. J. Immunol. 166, 3468–3475 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ramsdell, F., Lantz, T. & Fowlkes, B.J. A nondeletional mechanism of thymic self tolerance. Science 246, 1038–1041 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Roberts, J.L., Sharrow, S.O. & Singer, A. Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities. J. Exp. Med. 171, 935–940 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Takahama, Y. Medullary interplay for central tolerance. Blood 118, 2380–2381 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Dautigny, N., Le Campion, A. & Lucas, B. Timing and casting for actors of thymic negative selection. J. Immunol. 162, 1294–1302 (1999).

    CAS  PubMed  Google Scholar 

  19. Jones, L.A., Izon, D.J., Nieland, J.D., Linsley, P.S. & Kruisbeek, A.M. CD28–B7 interactions are not required for intrathymic clonal deletion. Int. Immunol. 5, 503–512 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Sentman, C.L., Shutter, J.R., Hockenbery, D., Kanagawa, O. & Korsmeyer, S.J. Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879–888 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Tan, R., Teh, S.J., Ledbetter, J.A., Linsley, P.S. & Teh, H.S. B7 costimulates proliferation of CD48+ T lymphocytes but is not required for the deletion of immature CD4+8+ thymocytes. J. Immunol. 149, 3217–3224 (1992).

    CAS  PubMed  Google Scholar 

  22. Walunas, T.L., Sperling, A.I., Khattri, R., Thompson, C.B. & Bluestone, J.A. CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J. Immunol. 156, 1006–1013 (1996).

    CAS  PubMed  Google Scholar 

  23. Simpson, E. T cell repertoire selection by mouse mammary tumour viruses. Eur. J. Immunogenet. 20, 137–149 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Buhlmann, J.E., Elkin, S.K. & Sharpe, A.H. A role for the B7–1/B7–2:CD28/CTLA-4 pathway during negative selection. J. Immunol. 170, 5421–5428 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Carbone, A.M., Marrack, P. & Kappler, J.W. Demethylated CD8 gene in CD4+ T cells suggests that CD4+ cells develop from CD8+ precursors. Science 242, 1174–1176 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, X., Fournier, S., Allison, J.P., Sharpe, A.H. & Hodes, R.J. The role of B7 costimulation in CD4/CD8 T cell homeostasis. J. Immunol. 164, 3543–3553 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Riley, J.L. PD-1 signaling in primary T cells. Immunol. Rev. 229, 114–125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gangadharan, D. et al. Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. Immunity 25, 631–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Egawa, T. & Littman, D.R. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat. Immunol. 9, 1131–1139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol. 6, 152–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hu, Q., Sader, A., Parkman, J.C. & Baldwin, T.A. Bim-mediated apoptosis is not necessary for thymic negative selection to ubiquitous self-antigens. J. Immunol. 183, 7761–7767 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kovalovsky, D., Pezzano, M., Ortiz, B.D. & Sant'Angelo, D.B. A novel TCR transgenic model reveals that negative selection involves an immediate, Bim-dependent pathway and a delayed, Bim-independent pathway. PLoS ONE 5, e8675 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Suen, A.Y. & Baldwin, T.A. Proapoptotic protein Bim is differentially required during thymic clonal deletion to ubiquitous versus tissue-restricted antigens. Proc. Natl. Acad. Sci. USA 109, 893–898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Erlacher, M. et al. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J. Exp. Med. 203, 2939–2951 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCaughtry, T.M., Baldwin, T.A., Wilken, M.S. & Hogquist, K.A. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J. Exp. Med. 205, 2575–2584 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao, J.X. et al. Perinatal blockade of b7–1 and b7–2 inhibits clonal deletion of highly pathogenic autoreactive T cells. J. Exp. Med. 195, 959–971 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, R., Wang-Zhu, Y. & Grey, H. Interactions between double positive thymocytes and high affinity ligands presented by cortical epithelial cells generate double negative thymocytes with T cell regulatory activity. Proc. Natl. Acad. Sci. USA 99, 2181–2186 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lambolez, F., Kronenberg, M. & Cheroutre, H. Thymic differentiation of TCRαβ+ CD8αα+ IELs. Immunol. Rev. 215, 178–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Leishman, A.J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Levelt, C.N. et al. High- and low-affinity single-peptide/MHC ligands have distinct effects on the development of mucosal CD8αα and CD8αβ T lymphocytes. Proc. Natl. Acad. Sci. USA 96, 5628–5633 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baldwin, T.A., Sandau, M.M., Jameson, S.C. & Hogquist, K.A. The timing of TCR α expression critically influences T cell development and selection. J. Exp. Med. 202, 111–121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahama, Y., Shores, E.W. & Singer, A. Negative selection of precursor thymocytes before their differentiation into CD4+CD8+ cells. Science 258, 653–656 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Cruz, D. et al. An opposite pattern of selection of a single T cell antigen receptor in the thymus and among intraepithelial lymphocytes. J. Exp. Med. 188, 255–265 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, B., Tahk, S., Yee, K.M., Fan, G. & Shuai, K. The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 330, 521–525 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Taylor, J. DiSanto and R. Hodes for critical reading of the manuscript; A. Sharpe (Harvard University) for B7-deficient mice, T. Honjo (Kyoto University) for PD-1-deficient mice; D. Littman (New York University) for Runx3-YFP reporter mice; and S. Sharrow, A. Adams and L. Granger for flow cytometry. Supported by the Intramural Research Program of the National Cancer Institute Center for Cancer Research of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

L.A.P. designed the study, did experiments, analyzed data and contributed to the writing of the manuscript; G.S.A., X.T., S.J. and F.V.L. did experiments and analyzed data; J.-H.P. and L.F. generated transgenic mice, and A.S. designed the study, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Alfred Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pobezinsky, L., Angelov, G., Tai, X. et al. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat Immunol 13, 569–578 (2012). https://doi.org/10.1038/ni.2292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2292

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing