Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic variation in Toll-like receptors and disease susceptibility

Abstract

Toll-like receptors (TLRs) are key initiators of the innate immune response and promote adaptive immunity. Much has been learned about the role of TLRs in human immunity from studies linking TLR genetic variation with disease. First, monogenic disorders associated with complete deficiency in certain TLR pathways, such as MyD88-IRAK4 or TLR3-Unc93b-TRIF-TRAF3, have demonstrated the specific roles of these pathways in host defense against pyogenic bacteria and herpesviruses, respectively. Second, common polymorphisms in genes encoding several TLRs and associated genes have been associated with both infectious and autoimmune diseases. The study of genetic variation in TLRs in various populations combined with information on infection has demonstrated complex interaction between genetic variation in TLRs and environmental factors. This interaction explains the differences in the effect of TLR polymorphisms on susceptibility to infection and autoimmune disease in various populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLRs, their main ligands and the intracellular pathways that lead to the stimulation of proinflammatory cytokines.
Figure 2: The structure of the Myddosome and Mal provide information on the molecular basis of why variants in MyD88 and Mal are associated with disease.
Figure 3: The major routes of migration of modern humans after the movement out of Africa 100,000 years ago, and the worldwide geographical distribution of haplotypes of TLR4 and TIRAP (which encodes Mal).
Figure 4: Adaptive evolution caused by infections, combined with nonadaptive evolution caused by genetic drift, population bottlenecks and migration routes, all contribute to PRR polymorphisms in various populations.

Similar content being viewed by others

References

  1. Janeway, C.A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11–16 (1992).

    CAS  PubMed  Google Scholar 

  2. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.-M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette Spaetzle/Toll/Cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    CAS  PubMed  Google Scholar 

  3. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Gay, N.J. & Keith, F.J. Drosophila Toll and IL-1 receptor. Nature 351, 355–356 (1991).

    CAS  PubMed  Google Scholar 

  5. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, S.C., Lo, Y.C. & Wu, H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gay, N.J., Gangloff, M. & O'Neill, L.A. What the Myddosome structure tells us about the initiation of innate immunity. Trends Immunol. 32, 104–109 (2011).

    CAS  PubMed  Google Scholar 

  10. Staschke, K.A. et al. IRAK4 kinase activity is required for Th17 differentiation and Th17-mediated disease. J. Immunol. 183, 568–577 (2009).

    CAS  PubMed  Google Scholar 

  11. Kenny, E.F. et al. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J. Immunol. 183, 3642–3651 (2009).

    CAS  PubMed  Google Scholar 

  12. Sakaguchi, M. et al. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS ONE 6, e23132 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Carty, M. et al. The human adaptor SARM negatively regulates adaptor protein TRIF–dependent Toll-like receptor signaling. Nat. Immunol. 7, 1074–1081 (2006).

    CAS  PubMed  Google Scholar 

  14. Beutler, B. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol. Rev. 227, 248–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schröder, N.W. & Schumann, R.R. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis. 5, 156–164 (2005).

    PubMed  Google Scholar 

  16. Arbour, N.C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).

    CAS  PubMed  Google Scholar 

  17. Lorenz, E., Mira, J.P., Frees, K.L. & Schwartz, D.A. Relevance of mutations in the TLR4 receptor in patients with Gram-negative septic shock. Arch. Intern. Med. 162, 1028–1032 (2002).

    CAS  PubMed  Google Scholar 

  18. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    CAS  PubMed  Google Scholar 

  19. Medvedev, A.E. et al. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J. Exp. Med. 198, 521–531 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Davidson, D.J. et al. IRAK-4 mutation (Q293X): rapid detection and characterization of defective post-transcriptional TLR/IL-1R responses in human myeloid and non-myeloid cells. J. Immunol. 177, 8202–8211 (2006).

    CAS  PubMed  Google Scholar 

  21. Cardenes, M. et al. Autosomal recessive interleukin-1 receptor-associated kinase 4 deficiency in fourth-degree relatives. J. Pediatr. 148, 549–551 (2006).

    PubMed  Google Scholar 

  22. Chapel, H., Puel, A., von Bernuth, H., Picard, C. & Casanova, J.L. Shigella sonnei meningitis due to interleukin-1 receptor-associated kinase-4 deficiency: first association with a primary immune deficiency. Clin. Infect. Dis. 40, 1227–1231 (2005).

    CAS  PubMed  Google Scholar 

  23. Comeau, J.L. et al. Staphylococcal pericarditis, and liver and paratracheal abscesses as presentations in two new cases of interleukin-1 receptor associated kinase 4 deficiency. Pediatr. Infect. Dis. J. 27, 170–174 (2008).

    PubMed  Google Scholar 

  24. Ku, C.L. et al. Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J. Exp. Med. 204, 2407–2422 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Szabó, J. et al. Recurrent infection with genetically identical pneumococcal isolates in a patient with interleukin-1 receptor-associated kinase-4 deficiency. J. Med. Microbiol. 56, 863–865 (2007).

    PubMed  Google Scholar 

  26. von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Picard, C. et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore) 89, 403–425 (2010).

    CAS  Google Scholar 

  28. Bousfiha, A. et al. Primary immunodeficiencies of protective immunity to primary infections. Clin. Immunol. 135, 204–209 (2010).

    CAS  PubMed  Google Scholar 

  29. George, J. et al. Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J. Biol. Chem. 286, 1341–1353 (2011).

    CAS  PubMed  Google Scholar 

  30. Puente, X.S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ngo, V.N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    CAS  PubMed  Google Scholar 

  32. Akira, S. & Hemmi, H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85, 85–95 (2003).

    CAS  PubMed  Google Scholar 

  33. Zhang, S.Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007).

    CAS  PubMed  Google Scholar 

  34. Guo, Y. et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J. Exp. Med. 208, 2083–2098 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pérez de Diego, R. et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33, 400–411 (2010).

    PubMed  Google Scholar 

  36. Casrouge, A. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006).

    CAS  PubMed  Google Scholar 

  37. Sancho-Shimizu, V. et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J. Clin. Invest. 121, 4889–4902 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. De Tiège, X., Rozenberg, F. & Heron, B. The spectrum of herpes simplex encephalitis in children. Eur. J. Paediatr. Neurol. 12, 72–81 (2008).

    PubMed  Google Scholar 

  39. Chapgier, A. et al. A partial form of recessive STAT1 deficiency in humans. J. Clin. Invest. 119, 1502–1514 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dupuis, S. et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003).

    CAS  PubMed  Google Scholar 

  41. Wlasiuk, G. & Nachman, M.W. Adaptation and constraint at Toll-like receptors in primates. Mol. Biol. Evol. 27, 2172–2186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Radstake, T.R. et al. The Toll-like receptor 4 Asp299Gly functional variant is associated with decreased rheumatoid arthritis disease susceptibility but does not influence disease severity and/or outcome. Arthritis Rheum. 50, 999–1001 (2004).

    CAS  PubMed  Google Scholar 

  43. Tao, K. et al. Genetic variations of Toll-like receptor 9 predispose to systemic lupus erythematosus in Japanese population. Ann. Rheum. Dis. 66, 905–909 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347, 185–192 (2002).

    CAS  PubMed  Google Scholar 

  45. Misch, E.A. & Hawn, T.R. Toll-like receptor polymorphisms and susceptibility to human disease. Clin. Sci. (Lond.) 114, 347–360 (2008).

    Google Scholar 

  46. Brouwer, M.C. et al. Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect. Dis. 9, 31–44 (2009).

    CAS  PubMed  Google Scholar 

  47. Texereau, J. et al. The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin. Infect. Dis. 41 (suppl. 7), S408–S415 (2005).

    CAS  PubMed  Google Scholar 

  48. Casanova, J.L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011).

    CAS  PubMed  Google Scholar 

  49. Ferwerda, B. et al. Functional consequences of toll-like receptor 4 polymorphisms. Mol. Med. 14, 346–352 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Khor, C.C. et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 39, 523–528 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hawn, T.R. et al. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J. Infect. Dis. 194, 1127–1134 (2006).

    CAS  PubMed  Google Scholar 

  52. Miao, R., Li, J., Sun, Z., Xu, F. & Shen, H. Meta-analysis on the association of TIRAP S180L variant and tuberculosis susceptibility. Tuberculosis (Edinb.) 91, 268–272 (2011).

    Google Scholar 

  53. Selvaraj, P., Harishankar, M., Singh, B., Jawahar, M.S. & Banurekha, V.V. Toll-like receptor and TIRAP gene polymorphisms in pulmonary tuberculosis patients of South India. Tuberculosis (Edinb.) 90, 306–310 (2010).

    CAS  Google Scholar 

  54. Dissanayeke, S.R. et al. Polymorphic variation in TIRAP is not associated with susceptibility to childhood TB but may determine susceptibility to TBM in some ethnic groups. PLoS ONE 4, e6698 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Stein, C.M. Genetic epidemiology of tuberculosis susceptibility: impact of study design. PLoS Pathog. 7, e1001189 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ferwerda, B. et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proc. Natl. Acad. Sci. USA 106, 10272–10277 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hamann, L. et al. Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy. BMC Med. Genet. 10, 65 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Song, Z. et al. Genetic variants in the TIRAP gene are associated with increased risk of sepsis-associated acute lung injury. BMC Med. Genet. 11, 168 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramasawmy, R. et al. Heterozygosity for the S180L variant of MAL/TIRAP, a gene expressing an adaptor protein in the Toll-like receptor pathway, is associated with lower risk of developing chronic Chagas cardiomyopathy. J. Infect. Dis. 199, 1838–1845 (2009).

    CAS  PubMed  Google Scholar 

  60. Castiblanco, J. et al. TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect. Genet. Evol. 8, 541–544 (2008).

    CAS  PubMed  Google Scholar 

  61. Ladhani, S.N. et al. Association between single-nucleotide polymorphisms in Mal/TIRAP and interleukin-10 genes and susceptibility to invasive haemophilus influenzae serotype b infection in immunized children. Clin. Infect. Dis. 51, 761–767 (2010).

    CAS  PubMed  Google Scholar 

  62. Durrani, O. et al. TIRAP Ser180Leu polymorphism is associated with Behçet's disease. Rheumatology 50, 1760–1765 (2011).

    CAS  PubMed  Google Scholar 

  63. Valkov, E. et al. Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proc. Natl. Acad. Sci. USA 108, 14879–14884 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nagpal, K. et al. Natural loss-of-function mutation of myeloid differentiation protein 88 disrupts its ability to form Myddosomes. J. Biol. Chem. 286, 11875–11882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    CAS  PubMed  Google Scholar 

  66. Hawn, T.R. et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease. J. Exp. Med. 198, 1563–1572 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hawn, T.R. et al. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS ONE 4, e5990 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Hawn, T.R. et al. A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 102, 10593–10597 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gewirtz, A.T. et al. Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn's disease. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1157–G1163 (2006).

    CAS  PubMed  Google Scholar 

  70. Wlasiuk, G., Khan, S., Switzer, W.M. & Nachman, M.W. A history of recurrent positive selection at the toll-like receptor 5 in primates. Mol. Biol. Evol. 26, 937–949 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dubois, P.C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sirugo, G. et al. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Hum. Genet. 123, 557–598 (2008).

    PubMed  Google Scholar 

  73. Kalla, A.A. & Tikly, M. Rheumatoid arthritis in the developing world. Best Pract. Res. Clin. Rheumatol. 17, 863–875 (2003).

    PubMed  Google Scholar 

  74. Barreiro, L.B. et al. Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet. 5, e1000562 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Ferrer-Admetlla, A. et al. Balancing selection is the main force shaping the evolution of innate immunity genes. J. Immunol. 181, 1315–1322 (2008).

    CAS  PubMed  Google Scholar 

  76. The Wellcome Trust Case-Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  77. Casals, F. et al. Genetic adaptation of the antibacterial human innate immunity network. BMC Evol. Biol. 11, 202 (2011).

    PubMed  PubMed Central  Google Scholar 

  78. Fumagalli, M. et al. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J. Exp. Med. 206, 1395–1408 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fornarino, S. et al. Evolution of the TIR domain-containing adaptors in humans: swinging between constraint and adaptation. Mol. Biol. Evol. 28, 3087–3097 (2011).

    CAS  PubMed  Google Scholar 

  80. Ferwerda, B. et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc. Natl. Acad. Sci. USA 104, 16645–16650 (2007).

    PubMed  PubMed Central  Google Scholar 

  81. DeGiorgio, M., Jakobsson, M. & Rosenberg, N.A. Out of Africa: modern human origins special feature: explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc. Natl. Acad. Sci. USA 106, 16057–16062 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Plantinga, T.S. et al. The evolutionary history of TLR4 polymorphisms in Europe. J. Innate Immun 4, 168–175 (2012).

    CAS  PubMed  Google Scholar 

  83. Fumagalli, M. et al. Signatures of environmental genetic Adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 7, e1002355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Stene, L.C. et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am. J. Gastroenterol. 101, 2333–2340 (2006).

    CAS  PubMed  Google Scholar 

  85. Di Rienzo, A. Population genetics models of common diseases. Curr. Opin. Genet. Dev. 16, 630–636 (2006).

    CAS  PubMed  Google Scholar 

  86. Barreiro, L.B. & Quintana-Murci, L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat. Rev. Genet. 11, 17–30 (2010).

    CAS  PubMed  Google Scholar 

  87. Abadie, V., Sollid, L.M., Barreiro, L.B. & Jabri, B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu. Rev. Immunol. 29, 493–525 (2011).

    CAS  PubMed  Google Scholar 

  88. Zhernakova, A. et al. Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am. J. Hum. Genet. 86, 970–977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Arslan, F. et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation 121, 80–90 (2010).

    CAS  PubMed  Google Scholar 

  90. Cavalli-Sforza, L.L. & Feldman, M.W. The application of molecular genetic approaches to the study of human evolution. Nat. Genet. 33 (suppl.), 266–275 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Netherlands Organization for Scientific Research (M.G.N. and C.W.), Science Foundation Ireland (L.A.J.O.) and the European Research Council (L.A.J.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke A J O'Neill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netea, M., Wijmenga, C. & O'Neill, L. Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol 13, 535–542 (2012). https://doi.org/10.1038/ni.2284

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing