Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus

Abstract

The development and maturation of semi-invariant natural killer T cells (iNKT cells) rely on the recognition of self antigens presented by CD1d restriction molecules in thymus. The nature of the stimulatory thymic self lipids remains elusive. We isolated lipids from thymocytes and found that ether-bonded mono-alkyl glycerophosphates and the precursors and degradation products of plasmalogens stimulated iNKT cells. Synthetic analogs showed high potency in activating thymic and peripheral iNKT cells. Mice deficient in the peroxisomal enzyme glyceronephosphate O-acyltransferase (GNPAT), essential for the synthesis of ether lipids, had significant alteration of the thymic maturation of iNKT cells and fewer iNKT cells in both thymus and peripheral organs, which confirmed the role of ether-bonded lipids as iNKT cell antigens. Thus, peroxisome-derived lipids are nonredundant self antigens required for the generation of a full iNKT cell repertoire.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of iNKT cell–stimulatory lipids extracted from mouse thymocytes.
Figure 2: Synthetic mono-alkyl glycerophosphates stimulate thymic iNKT cells.
Figure 3: Synthetic mono-alkyl glycerophosphates stimulate peripheral iNKT cells.
Figure 4: Fewer iNKT cells in Gnpat−/− mice.
Figure 5: Analysis of Gnpat−/− iNKT thymocytes.
Figure 6: Normal antigen responsiveness of residual Gnpat−/− iNKT cells and normal antigen presentation by Gnpat−/− antigen-presenting cells.
Figure 7: Gnpat−/− thymocytes inefficiently select iNKT cells but develop normally when selected by GNPAT-sufficient thymocytes.

References

  1. Kronenberg, M. Toward and understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 26, 877–900 (2005).

    Article  Google Scholar 

  2. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Brigl, M. & Brenner, M.B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Matsuda, J.L. et al. Homeostasis of Vα14i NKT cells. Nat. Immunol. 3, 966–974 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. McNab, F.W. et al. The influence of CD1d in postselection NKT cell maturation and homeostasis. J. Immunol. 175, 3762–3768 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Bendelac, A., Rivera, M.N., Park, S.H. & Roark, J.H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Vincent, M.S., Gumperz, J.E. & Brenner, M.B. Understanding the function of CD1-restricted T cells. Nat. Immunol. 4, 517–523 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Galli, G. et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J. Exp. Med. 197, 1051–1057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dhodapkar, M.V. et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J. Exp. Med. 197, 1667–1676 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Sriram, V., Du, W., Gervay-Hague, J. & Brutkiewicz, R.R. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol. 35, 1692–1701 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Chang, Y.J. et al. Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J. Clin. Invest. 121, 57–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Cohen, N.R., Garg, S. & Brenner, M.B. Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv. Immunol. 102, 1–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Wingender, G. et al. Invariant NKT cells are required for airway inflammation induced by environmental antigens. J. Exp. Med. 208, 1151–1162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. & Wakao, H. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21, 483–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Meyer, E.H., DeKruyff, R.H. & Umetsu, D.T. T cells and NKT cells in the pathogenesis of asthma. Annu. Rev. Med. 59, 281–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. MacDonald, H.R. & Mycko, M.P. Development and selection of Vαl4i NKT cells. Curr. Top. Microbiol. Immunol. 314, 195–212 (2007).

    CAS  PubMed  Google Scholar 

  20. Godfrey, D.I., Stankovic, S. & Baxter, A.G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Gapin, L. iNKT cell autoreactivity: what is 'self' and how is it recognized? Nat. Rev. Immunol. 10, 272–277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paget, C. et al. Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597–609 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Darmoise, A. et al. Lysosomal α-galactosidase controls the generation of self lipid antigens for natural killer T cells. Immunity 33, 216–228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brennan, P.J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat. Immunol. 12, 1202–1211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fox, L.M. et al. Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol. 7, e1000228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pei, B. et al. Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids. J. Immunol. 186, 1348–1360 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Cox, D. et al. Determination of cellular lipids bound to human CD1d molecules. PLoS ONE 4, e5325 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yuan, W., Kang, S.J., Evans, J.E. & Cresswell, P. Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. J. Immunol. 182, 4784–4791 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Haig, N.A. et al. Identification of self-lipids presented by CD1c and CD1d proteins. J. Biol. Chem. 286, 37692–37701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mallevaey, T. et al. A molecular basis for NKT cell recognition of CD1d-self-antigen. Immunity 34, 315–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wun, K.S. et al. A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. Immunity 34, 327–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pellicci, D.G. et al. Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat. Immunol. 12, 827–833 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han, X. & Gross, R.W. Structural determination of lysophospholipid regioisomers by electrospray ionization tandem mass spectrometry. J. Am. Chem. Soc. 118, 451–457 (1996).

    Article  CAS  Google Scholar 

  35. Liu, D. et al. Role of dihydroxyacetonephosphate acyltransferase in the biosynthesis of plasmalogens and nonether glycerolipids. J. Lipid Res. 46, 727–735 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Rodemer, C. et al. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12, 1881–1895 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Brites, P., Waterham, H.R. & Wanders, R.J. Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta 1636, 219–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Godfrey, D.I. & Berzins, S.P. Control points in NKT-cell development. Nat. Rev. Immunol. 7, 505–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Mendiratta, S.K. et al. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6, 469–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Smiley, S.T., Kaplan, M.H. & Grusby, M.J. Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275, 977–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Schümann, J. et al. Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolism. Eur. J. Immunol. 37, 1431–1441 (2007).

    Article  PubMed  Google Scholar 

  42. Gadola, S.D. et al. Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J. Exp. Med. 203, 2293–2303 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Santo, C. et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat. Immunol. 11, 1039–1046 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Santo, C. et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J. Clin. Invest. 118, 4036–4048 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salio, M. et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl. Acad. Sci. USA 104, 20490–20495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Godfrey, D.I. et al. Antigen recognition by CD1d-restricted NKT T cell receptors. Semin. Immunol. 22, 61–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Mycko, M.P. et al. Selective requirement for c-Myc at an early stage of Vα14i NKT cell development. J. Immunol. 182, 4641–4648 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Schümann, J., Voyle, R.B., Wei, B.Y. & MacDonald, H.R. Cutting edge: influence of the TCR Vβ domain on the avidity of CD1d:α-galactosylceramide binding by invariant Vα14 NKT cells. J. Immunol. 170, 5815–5819 (2003).

    Article  PubMed  Google Scholar 

  49. Ohteki, T. & MacDonald, H.R. Major histocompatibility complex class I related molecules control the development of CD4+8 and CD48 subsets of natural killer 1.1+ T cell receptor-α/β+ cells in the liver of mice. J. Exp. Med. 180, 699–704 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Kyriakakis, E. et al. Invariant natural killer T cells: Linking inflammation and neovascularization in human atherosclerosis. Eur. J. Immunol. 40, 3268–3279 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Bodennec, J. et al. A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges. J. Lipid Res. 41, 1524–1531 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Just (University of Heidelberg) for Gnpat−/− mice; J. Mattner (Cincinnati Children's Hospital) for S. paucimobilis; P. Seeberger (Max Plank Institute of Colloids and Interfaces, Potsdam) for GSL-1; E. Palmer, K. Karjalainen and P. Dellabona for discussions; P. Cullen for proofreading the manuscript; and L. Angman for technical assistance. Supported by the Swiss National Foundation (3100AO-122464/1 and Sinergia CRS133-124819 to G.D.L., and Oncosuisse to L.M. and G.D.L.) and the Yunnan High-End Technology Professionals Introduction Program (2010CI117 to C.X.).

Author information

Authors and Affiliations

Authors

Contributions

F.F. designed and did most of the experiments and participated in manuscript preparation; G.S.R. obtained and interpreted MS data; M.L. did experiments and participated in discussions; S.S. prepared and purified lipid extracts; M.C. and M.K. did experiments; S.F.-P. and J.B. provided genotyped Gnpat−/− mice; G.N. and C.X. provided synthetic compounds; A.C. and A.S. did experiments; L.M. supervised the work, contributed to discussions and prepared the manuscript; and G.D.L. conceived of the experiments, supervised the work and prepared the manuscript.

Corresponding author

Correspondence to Gennaro De Libero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Table 1 (PDF 13010 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facciotti, F., Ramanjaneyulu, G., Lepore, M. et al. Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat Immunol 13, 474–480 (2012). https://doi.org/10.1038/ni.2245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing