Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch

Abstract

Innate lymphoid cells (ILCs) of the ILC22 type protect the intestinal mucosa from infection by secreting interleukin 22 (IL-22). ILC22 cells include NKp46+ and lymphoid tissue–inducer (LTi)-like subsets that express the aryl hydrocarbon receptor (AHR). Here we found that Ahr−/− mice had a considerable deficit in ILC22 cells that resulted in less secretion of IL-22 and inadequate protection against intestinal bacterial infection. Ahr−/− mice also lacked postnatally 'imprinted' cryptopatches and isolated lymphoid follicles (ILFs), but not embryonically 'imprinted' Peyer's patches. AHR induced the transcription factor Notch, which was required for NKp46+ ILCs, whereas LTi-like ILCs, cryptopatches and ILFs were partially dependent on Notch signaling. Thus, AHR was essential for ILC22 cells and postnatal intestinal lymphoid tissues. Moreover, ILC22 subsets were heterogeneous in their requirement for Notch and their effect on the generation of intestinal lymphoid tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AHR is essential for IL-22-production in the intestinal lamina propria and resistance to C. rodentium infection.
Figure 2: Ahr−/− mice have considerably fewer NKp46+ ILCs.
Figure 3: Ahr−/− mice lack CD4+ LTi-like ILCs as well as cryptopatches and ILFs in the small intestine.
Figure 4: The developmental defect of Ahr−/− mice is cell intrinsic.
Figure 5: AHR activation induces the upregulation of Notch.
Figure 6: Mice that selectively lack expression of RBP-Jκ in the hematopoietic compartment have fewer NKp46+ ILCs.

Similar content being viewed by others

References

  1. Hooper, L.V. & Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  Google Scholar 

  2. Asquith, M. & Powrie, F. An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer. J. Exp. Med. 207, 1573–1577 (2010).

    Article  CAS  Google Scholar 

  3. Hand, T. & Belkaid, Y. Microbial control of regulatory and effector T cell responses in the gut. Curr. Opin. Immunol. 22, 63–72 (2010).

    Article  CAS  Google Scholar 

  4. Eberl, G. & Lochner, M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol. 2, 478–485 (2009).

    Article  CAS  Google Scholar 

  5. Ouyang, W., Kolls, J.K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  Google Scholar 

  6. Zenewicz, L.A. & Flavell, R.A. IL-22 and inflammation: leukin' through a glass onion. Eur. J. Immunol. 38, 3265–3268 (2008).

    Article  CAS  Google Scholar 

  7. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  Google Scholar 

  8. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  Google Scholar 

  9. Sonnenberg, G.F., Fouser, L.A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).

    Article  CAS  Google Scholar 

  10. Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    Article  CAS  Google Scholar 

  11. van de Pavert, S.A. & Mebius, R.E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    Article  CAS  Google Scholar 

  12. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    Article  CAS  Google Scholar 

  13. Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    Article  CAS  Google Scholar 

  14. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    Article  CAS  Google Scholar 

  15. Eberl, G. & Littman, D.R. The role of the nuclear hormone receptor RORγt in the development of lymph nodes and Peyer's patches. Immunol. Rev. 195, 81–90 (2003).

    Article  CAS  Google Scholar 

  16. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  Google Scholar 

  17. Satoh-Takayama, N. et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med. 207, 273–280 (2010).

    Article  CAS  Google Scholar 

  18. Sanos, S.L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    Article  CAS  Google Scholar 

  19. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  Google Scholar 

  20. Stockinger, B., Hirota, K., Duarte, J. & Veldhoen, M. External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin. Immunol. 23, 99–105 (2011).

    Article  CAS  Google Scholar 

  21. Kerkvliet, N.I. AHR-mediated immunomodulation: the role of altered gene transcription. Biochem. Pharmacol. 77, 746–760 (2009).

    Article  CAS  Google Scholar 

  22. Stevens, E.A., Mezrich, J.D. & Bradfield, C.A. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 127, 299–311 (2009).

    Article  CAS  Google Scholar 

  23. Esser, C., Rannug, A. & Stockinger, B. The aryl hydrocarbon receptor in immunity. Trends Immunol. 30, 447–454 (2009).

    Article  CAS  Google Scholar 

  24. Nguyen, L.P. & Bradfield, C.A. The search for endogenous activators of the aryl hydrocarbon receptor. Chem. Res. Toxicol. 21, 102–116 (2008).

    Article  CAS  Google Scholar 

  25. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    Article  CAS  Google Scholar 

  26. Opitz, C.A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).

    Article  CAS  Google Scholar 

  27. Quintana, F.J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  Google Scholar 

  28. Nguyen, N.T. et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl. Acad. Sci. USA 107, 19961–19966 (2010).

    Article  CAS  Google Scholar 

  29. Mezrich, J.D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    Article  CAS  Google Scholar 

  30. Quintana, F.J. et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 107, 20768–20773 (2010).

    Article  CAS  Google Scholar 

  31. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11, 854–861 (2010).

    Article  CAS  Google Scholar 

  32. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  Google Scholar 

  33. Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206, 43–49 (2009).

    Article  CAS  Google Scholar 

  34. Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y. & Kishimoto, T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc. Natl. Acad. Sci. USA 105, 9721–9726 (2008).

    Article  CAS  Google Scholar 

  35. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    CAS  Google Scholar 

  36. Sawa, S. et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12, 320–326 (2011).

    Article  CAS  Google Scholar 

  37. Boverhof, D.R. et al. Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. Toxicol. Sci. 94, 398–416 (2006).

    Article  CAS  Google Scholar 

  38. Hughes, T. et al. Interleukin-1β selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity 32, 803–814 (2010).

    Article  CAS  Google Scholar 

  39. Dere, E., Lo, R., Celius, T., Matthews, J. & Zacharewski, T.R. Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genomics 12, 365 (2011).

    Article  CAS  Google Scholar 

  40. Lügering, A. et al. CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin. Exp. Immunol. 160, 440–449 (2010).

    Article  Google Scholar 

  41. Hamada, H. et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168, 57–64 (2002).

    Article  CAS  Google Scholar 

  42. Ota, N. et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol. 12, 941–948 (2011).

    Article  CAS  Google Scholar 

  43. Shibata, K. et al. Notch-Hes1 pathway is required for the development of IL-17-producing gd T cells. Blood 118, 586–593 (2011).

    Article  CAS  Google Scholar 

  44. Mukherjee, S., Schaller, M.A., Neupane, R., Kunkel, S.L. & Lukacs, N.W. Regulation of T cell activation by Notch ligand, DLL4, promotes IL-17 production and Rorc activation. J. Immunol. 182, 7381–7388 (2009).

    Article  CAS  Google Scholar 

  45. Keerthivasan, S. et al. Notch signaling regulates mouse and human Th17 differentiation. J. Immunol. 187, 692–701 (2011).

    Article  CAS  Google Scholar 

  46. Possot, C. et al. Notch signaling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells. Nat. Immunol. 12, 949–958 (2011).

    Article  CAS  Google Scholar 

  47. Alam, M.S. et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 107, 5943–5948 (2010).

    Article  Google Scholar 

  48. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010).

    Article  CAS  Google Scholar 

  49. Finke, D. Induction of intestinal lymphoid tissue formation by intrinsic and extrinsic signals. Semin. Immunopathol. 31, 151–169 (2009).

    Article  Google Scholar 

  50. Wang, C., McDonough, J.S., McDonald, K.G., Huang, C. & Newberry, R.D. Alpha4beta7/MAdCAM-1 interactions play an essential role in transitioning cryptopatches into isolated lymphoid follicles and a nonessential role in cryptopatch formation. J. Immunol. 181, 4052–4061 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gilfillan and P. Ahern for critical comments; R.D. Schreiber (Washington University), T. Honjo (Kyoto University) and A. Tumanov (Trudeau Institute) for mouse strains; J. Gordon (Washington University) for germ-free mice (funded by the National Institute of Diabetes and Digestive and Kidney Disease (Digestive Disease Research Core Center grant P30DK052574)); and D. O'Donnell and M. Karlsson for germ-free husbandry. Supported by the US National Institutes of Health (Kirschstein–National Research Service Award to J.S.L., R01 DE021255-01 to M.Co., and R01 DK064798 to R.D.N.) and the National Institute of Allergy and Infectious Diseases Center for HIV/AIDS Vaccine Immunology (A1067854 to M.Co.).

Author information

Authors and Affiliations

Authors

Contributions

J.S.L., M.Ce. and K.G.M. did experiments; C.G., G.D.K., M.N., A.M., R.K., C.A.B. provided reagents and experimental advice; J.S.L., M.Ce., R.D.N and M.Co. designed experiments and analyzed data; M.Co. supervised research; and J.S.L. and M.Co. wrote the manuscript.

Corresponding author

Correspondence to Marco Colonna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Methods (PDF 3668 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Cella, M., McDonald, K. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 13, 144–151 (2012). https://doi.org/10.1038/ni.2187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing