Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localized epigenetic changes induced by DH recombination restricts recombinase to DJH junctions

Abstract

Genes encoding immunoglobulin heavy chains (Igh) are assembled by rearrangement of variable (VH), diversity (DH) and joining (JH) gene segments. Three critical constraints govern VH recombination. These include timing (VH recombination follows DH recombination), precision (VH gene segments recombine only to DJH junctions) and allele specificity (VH recombination is restricted to DJH-recombined alleles). Here we provide a model for these universal features of VH recombination. Analyses of DJH-recombined alleles showed that DJH junctions were selectively epigenetically marked, became nuclease sensitive and bound RAG recombinase proteins, which thereby permitted DH-associated recombination signal sequences to initiate the second step of Igh gene assembly. We propose that VH recombination is precise, because these changes did not extend to germline DH segments located 5′ of the DJH junction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatin accessibility at a DSP2.2b-JH1–rearranged allele.
Figure 2: Histone modifications at unrearranged upstream DH gene segments in DJH-rearranged Igh alleles.
Figure 3: Histone modifications at Igh alleles with DFL16.1 and DQ52 rearrangements.
Figure 4: Chromatin accessibility at DSP2.9-JH2–rearranged alleles.
Figure 5: Chromatin accessibility at DJH junctions in primary pro-B cells.
Figure 6: Association of RAG-1 with DJH-rearranged Igh alleles.

Similar content being viewed by others

References

  1. Bergman, Y. & Cedar, H. Epigenetic control of recombination in the immune system. Semin. Immunol. 22, 323–329 (2010).

    Article  CAS  Google Scholar 

  2. Schatz, D.G. & Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11, 251–263 (2011).

    Article  CAS  Google Scholar 

  3. Perlot, T. & Alt, F.W. Cis-regulatory elements and epigenetic changes control genomic rearrangements of the IgH locus. Adv. Immunol. 99, 1–32 (2008).

    Article  CAS  Google Scholar 

  4. Thomas, L.R., Cobb, R.M. & Oltz, E.M. Dynamic regulation of antigen receptor gene assembly. Adv. Exp. Med. Biol. 650, 103–115 (2009).

    Article  CAS  Google Scholar 

  5. Blackwell, T.K. et al. Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature 324, 585–589 (1986).

    Article  CAS  Google Scholar 

  6. Yancopoulos, G.D. & Alt, F.W. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40, 271–281 (1985).

    Article  CAS  Google Scholar 

  7. Osipovich, O. & Oltz, E.M. Regulation of antigen receptor gene assembly by genetic-epigenetic crosstalk. Semin. Immunol. 22, 313–322 (2010).

    Article  CAS  Google Scholar 

  8. Spicuglia, S., Pekowska, A., Zacarias-Cabeza, J. & Ferrier, P. Epigenetic control of Tcrb gene rearrangement. Semin. Immunol. 22, 330–336 (2010).

    Article  CAS  Google Scholar 

  9. Subrahmanyam, R. & Sen, R. Epigenetic features that regulate IgH locus recombination and expression. Curr. Top. Microbiol. Immunol. 356, 39–63 (2011).

    Google Scholar 

  10. Subrahmanyam, R. & Sen, R. RAGs' eye view of the immunoglobulin heavy chain gene locus. Semin. Immunol. 22, 337–345 (2010).

    Article  CAS  Google Scholar 

  11. Chakraborty, T. et al. Repeat organization and epigenetic regulation of the DH-Cmu domain of the immunoglobulin heavy-chain gene locus. Mol. Cell 27, 842–850 (2007).

    Article  CAS  Google Scholar 

  12. Johnson, K. et al. B cell-specific loss of histone 3 lysine 9 methylation in the VH locus depends on Pax5. Nat. Immunol. 5, 853–861 (2004).

    Article  CAS  Google Scholar 

  13. Osipovich, O. et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat. Immunol. 5, 309–316 (2004).

    Article  CAS  Google Scholar 

  14. Liu, Y., Subrahmanyam, R., Chakraborty, T., Sen, R. & Desiderio, S. A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 27, 561–571 (2007).

    Article  CAS  Google Scholar 

  15. Matthews, A.G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007).

    Article  CAS  Google Scholar 

  16. Ramón-Maiques, S. et al. The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc. Natl. Acad. Sci. USA 104, 18993–18998 (2007).

    Article  Google Scholar 

  17. Johnston, C.M., Wood, A.L., Bolland, D.J. & Corcoran, A.E. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J. Immunol. 176, 4221–4234 (2006).

    Article  CAS  Google Scholar 

  18. Chakraborty, T. et al. A 220-nucleotide deletion of the intronic enhancer reveals an epigenetic hierarchy in immunoglobulin heavy chain locus activation. J. Exp. Med. 206, 1019–1027 (2009).

    Article  CAS  Google Scholar 

  19. Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin mu heavy chain gene locus. EMBO J. 20, 6394–6403 (2001).

    Article  CAS  Google Scholar 

  20. Ji, Y. et al. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141, 419–431 (2010).

    Article  CAS  Google Scholar 

  21. Guo, C. et al. Two forms of loops generate the chromatin conformation of the immunoglobulin heavy-chain gene locus. Cell 147, 332–343 (2011).

    Article  CAS  Google Scholar 

  22. Guo, C. et al. CTCF-binding elements mediate control of V(D)J recombination. Nature 477, 424–430 (2011).

    Article  CAS  Google Scholar 

  23. Featherstone, K., Wood, A.L., Bowen, A.J. & Corcoran, A.E. The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination. J. Biol. Chem. 285, 9327–9338 (2010).

    Article  CAS  Google Scholar 

  24. Degner-Leisso, S.C. & Feeney, A.J. Epigenetic and 3-dimensional regulation of V(D)J rearrangement of immunoglobulin genes. Semin. Immunol. 22, 346–352 (2010).

    Article  CAS  Google Scholar 

  25. Hewitt, S.L., Chaumeil, J. & Skok, J.A. Chromosome dynamics and the regulation of V(D)J recombination. Immunol. Rev. 237, 43–54 (2010).

    Article  CAS  Google Scholar 

  26. Dahl, J.A. & Collas, P. A rapid micro chromatin immunoprecipitation assay (microChIP). Nat. Protoc. 3, 1032–1045 (2008).

    Article  CAS  Google Scholar 

  27. Koralov, S.B., Novobrantseva, T.I., Hochedlinger, K., Jaenisch, R. & Rajewsky, K. Direct in vivo VH to JH rearrangement violating the 12/23 rule. J. Exp. Med. 201, 341–348 (2005).

    Article  CAS  Google Scholar 

  28. Akamatsu, Y. et al. Deletion of the RAG2 C terminus leads to impaired lymphoid development in mice. Proc. Natl. Acad. Sci. USA 100, 1209–1214 (2003).

    Article  CAS  Google Scholar 

  29. Dudley, D.D. et al. Impaired V(D)J recombination and lymphocyte development in core RAG1-expressing mice. J. Exp. Med. 198, 1439–1450 (2003).

    Article  CAS  Google Scholar 

  30. Hesslein, D.G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).

    Article  CAS  Google Scholar 

  31. Liu, H. et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 21, 1179–1189 (2007).

    Article  CAS  Google Scholar 

  32. Bertolino, E. et al. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat. Immunol. 6, 836–843 (2005).

    Article  CAS  Google Scholar 

  33. Chowdhury, D. & Sen, R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18, 229–241 (2003).

    Article  CAS  Google Scholar 

  34. Stanton, M.L. & Brodeur, P.H. Stat5 mediates the IL-7-induced accessibility of a representative D-Distal VH gene. J. Immunol. 174, 3164–3168 (2005).

    Article  CAS  Google Scholar 

  35. Xu, C.R., Schaffer, L., Head, S.R. & Feeney, A.J. Reciprocal patterns of methylation of H3K36 and H3K27 on proximal vs. distal IgVH genes are modulated by IL-7 and Pax5. Proc. Natl. Acad. Sci. USA 105, 8685–8690 (2008).

    Article  CAS  Google Scholar 

  36. Bates, J.G., Cado, D., Nolla, H. & Schlissel, M.S. Chromosomal position of a VH gene segment determines its activation and inactivation as a substrate for V(D)J recombination. J. Exp. Med. 204, 3247–3256 (2007).

    Article  CAS  Google Scholar 

  37. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  38. Ciubotaru, M. et al. RAG1-DNA binding in V(D)J recombination. Specificity and DNA-induced conformational changes revealed by fluorescence and CD spectroscopy. J. Biol. Chem. 278, 5584–5596 (2003).

    Article  CAS  Google Scholar 

  39. Fugmann, S.D., Villey, I.J., Ptaszek, L.M. & Schatz, D.G. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell 5, 97–107 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Intramural Research Program of the National Institute on Aging (US National Institutes of Health; AI20047 to F.W.A., and AI32524 to D.G.S.) and the Howard Hughes Medical Institute (F.W.A. and D.G.S.).

Author information

Authors and Affiliations

Authors

Contributions

R. Subrahmanyam designed and did all the experiments; R. Subrahmanyam and R. Sen analyzed and interpreted the data; H.D. assisted with Southern blot analysis; I.I. did the ChIP analysis of H3K4me2; T.C. assisted in the initial characterization of DJH-rearranged cell lines; Y.J. and D.G.S. provided D345 cells and discussions of the ChIP analysis of RAG; Y.Z. and F.W.A. generated the Eμ-deficient cell lines; R. Subrahmanyam and R. Sen wrote the manuscript; and D.G.S. and F.W.A. read and critiqued the manuscript.

Corresponding author

Correspondence to Ranjan Sen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Table 1 (PDF 976 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subrahmanyam, R., Du, H., Ivanova, I. et al. Localized epigenetic changes induced by DH recombination restricts recombinase to DJH junctions. Nat Immunol 13, 1205–1212 (2012). https://doi.org/10.1038/ni.2447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2447

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing