Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling

An Author Correction to this article was published on 03 July 2020

This article has been updated

Abstract

Immunoglobulin class switching is crucial for the generation of antibody diversity in humoral immunity and, when deregulated, also has severe pathological consequences. How the magnitude of immunoglobulin isotype switching is controlled is still poorly understood. Here we identify the kinase TBK1 as a pivotal negative regulator of class switching to the immunoglobulin A (IgA) isotype. B cell–specific ablation of TBK1 in mice resulted in uncontrolled production of IgA and the development of nephropathy-like disease signs. TBK1 negatively regulated IgA class switching by attenuating noncanonical signaling via the transcription factor NF-κB, an action that involved TBK1-mediated phosphorylation and subsequent degradation of the NF-κB-inducing kinase NIK. Our findings establish TBK1 as a pivotal negative regulator of the noncanonical NF-κB pathway and identify a unique mechanism that controls IgA production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cell–specific ablation of Tbk1 results in hyperproduction of IgA and autoantibodies, coupled with nephropathy-like signs.
Figure 2: TBK1 negatively regulates class switching to IgA induced by members of the TNF family.
Figure 3: Class switching to IgA is not affected by deficiency in the receptor for type I interferon or IKKɛ.
Figure 4: TBK1 is a pivotal negative regulator of the noncanonical NF-κB pathway.
Figure 5: The noncanonical NF-κB pathway is required for class switching to IgA.
Figure 6: TBK1 is activated by the TNF family of IgA inducers and negatively regulates the induction of NIK.
Figure 7: TBK1 induces the phosphorylation and degradation of NIK.

Similar content being viewed by others

Change history

  • 18 October 2012

    In the version of this article initially published online, the word "isotype" was misspelled in the fourth line of the abstract. The third sentence of the abstract should read, "Here we identify the kinase TBK1 as a pivotal negative regulator of class switching to the immunoglobulin A (IgA) isotype." The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Macpherson, A.J., McCoy, K.D., Johansen, F.E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    CAS  PubMed  Google Scholar 

  2. Park, M.A., Li, J.T., Hagan, J.B., Maddox, D.E. & Abraham, R.S. Common variable immunodeficiency: a new look at an old disease. Lancet 372, 489–502 (2008).

    PubMed  Google Scholar 

  3. Papista, C., Berthelot, L. & Monteiro, R.C. Dysfunctions of the Iga system: a common link between intestinal and renal diseases. Cell. Mol. Immunol. 8, 126–134 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, J. et al. Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. J. Clin. Invest. 113, 826–835 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. McCarthy, D.D., Chiu, S., Gao, Y., Summers-deLuca, L.E. & Gommerman, J.L. BAFF induces a hyper-IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell. Immunol. 241, 85–94 (2006).

    CAS  PubMed  Google Scholar 

  6. McCarthy, D.D. et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J. Clin. Invest. 121, 3991–4002 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cazac, B.B. & Roes, J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443–451 (2000).

    CAS  PubMed  Google Scholar 

  8. Litinskiy, M.B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201, 35–39 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Castigli, E. et al. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl. Acad. Sci. USA 101, 3903–3908 (2004).

    CAS  PubMed  Google Scholar 

  11. Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tezuka, H. et al. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity 34, 247–257 (2011).

    CAS  PubMed  Google Scholar 

  13. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    CAS  PubMed  Google Scholar 

  14. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    CAS  PubMed  Google Scholar 

  15. Sun, S.C. The noncanonical NF-κB pathway. Immunol. Rev. 246, 125–140 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Tucker, E. et al. A novel mutation in the Nfkb2 gene generates an NF-κB2 “super repressor”. J. Immunol. 179, 7514–7522 (2007).

    CAS  PubMed  Google Scholar 

  17. Shinkura, R. et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-κb-inducing kinase. Nat. Genet. 22, 74–77 (1999).

    CAS  PubMed  Google Scholar 

  18. Caamano, J.H. et al. Nuclear factor (NF)-κB2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J. Exp. Med. 187, 185–196 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Franzoso, G. et al. Mice deficient in nuclear factor (NF)-κB/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J. Exp. Med. 187, 147–159 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Snapper, C.M. et al. B cells lacking RelB are defective in proliferative responses, but undergo normal B cell maturation to Ig secretion and Ig class switching. J. Exp. Med. 184, 1537–1541 (1996).

    CAS  PubMed  Google Scholar 

  21. Mackay, F. & Schneider, P. TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. Cytokine Growth Factor Rev. 19, 263–276 (2008).

    CAS  PubMed  Google Scholar 

  22. Hauer, J. et al. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-κB pathway by TRAF-binding TNFRs. Proc. Natl. Acad. Sci. USA 102, 2874–2879 (2005).

    CAS  PubMed  Google Scholar 

  23. Chang, S.K., Arendt, B.K., Darce, J.R., Wu, X. & Jelinek, D.F. A role for BLyS in the activation of innate immune cells. Blood 108, 2687–2694 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Stadanlick, J.E. et al. Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling. Nat. Immunol. 9, 1379–1387 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzuki, K., Meek, B., Doi, Y., Honjo, T. & Fagarasan, S. Two distinctive pathways for recruitment of naive and primed IgM+ B cells to the gut lamina propria. Proc. Natl. Acad. Sci. USA 102, 2482–2486 (2005).

    CAS  PubMed  Google Scholar 

  26. Fitzgerald, K.A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    CAS  PubMed  Google Scholar 

  27. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    CAS  PubMed  Google Scholar 

  28. McWhirter, S.M. et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. USA 101, 233–238 (2004).

    CAS  PubMed  Google Scholar 

  29. Hemmi, H. et al. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Perry, A.K., Chow, E.K., Goodnough, J.B., Yeh, W.C. & Cheng, G. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J. Exp. Med. 199, 1651–1658 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonnard, M. et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription. EMBO J. 19, 4976–4985 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomino, Y. IgA nephropathy: lessons from an animal model, the ddY mouse. J. Nephrol. 21, 463–467 (2008).

    CAS  PubMed  Google Scholar 

  33. Kim, R.J. et al. IL-4-induced AID expression and its relevance to IgA class switch recombination. Biochem. Biophys. Res. Commun. 361, 398–403 (2007).

    CAS  PubMed  Google Scholar 

  34. Lorenz, M., Jung, S. & Radbruch, A. Switch transcripts in immunoglobulin class switching. Science 267, 1825–1828 (1995).

    CAS  PubMed  Google Scholar 

  35. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS  PubMed  Google Scholar 

  36. Hiscott, J. Triggering the innate antiviral response through IRF-3 activation. J. Biol. Chem. 282, 15325–15329 (2007).

    CAS  PubMed  Google Scholar 

  37. Clément, J.F., Meloche, S. & Servant, M.J. The IKK-related kinases: from innate immunity to oncogenesis. Cell Res. 18, 889–899 (2008).

    PubMed  Google Scholar 

  38. Sakurai, D. et al. TACI regulates IgA production by APRIL in collaboration with HSPG. Blood 109, 2961–2967 (2007).

    CAS  PubMed  Google Scholar 

  39. Bossen, C. et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J. Biol. Chem. 281, 13964–13971 (2006).

    CAS  PubMed  Google Scholar 

  40. Yin, L. et al. Defective lymphotoxin-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science 291, 2162–2165 (2001).

    CAS  PubMed  Google Scholar 

  41. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    CAS  PubMed  Google Scholar 

  42. Clark, K., Takeuchi, O., Akira, S. & Cohen, P. The TRAF-associated protein TANK facilitates cross-talk within the IκB kinase family during Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 108, 17093–17098 (2011).

    CAS  PubMed  Google Scholar 

  43. Razani, B. et al. Negative feedback in non-canonical NF-κB signaling modulates NIK stability through IKKα-mediated phosphorylation. Sci. Signal. 3, ra41 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Liao, G., Zhang, M., Harhaj, E.W. & Sun, S.C. Regulation of the NF-κB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J. Biol. Chem. 279, 26243–26250 (2004).

    CAS  PubMed  Google Scholar 

  45. Clark, K. et al. Novel cross-talk within the IKK family controls innate immunity. Biochem. J. 434, 93–104 (2011).

    CAS  PubMed  Google Scholar 

  46. Sun, S.-C., Ganchi, P.A., Beraud, C., Ballard, D.W. & Greene, W.C. Autoregulation of the NF-κB transactivator Rel A (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Proc. Natl. Acad. Sci. USA 91, 1346–1350 (1994).

    CAS  PubMed  Google Scholar 

  47. Tenoever, B.R. et al. Multiple functions of the IKK-related kinase IKKɛ in interferon-mediated antiviral immunity. Science 315, 1274–1278 (2007).

    CAS  PubMed  Google Scholar 

  48. Xiao, G. & Sun, S.C. Negative regulation of the nuclear factor κB-inducing kinase by a cis-acting domain. J. Biol. Chem. 275, 21081–21085 (2000).

    CAS  PubMed  Google Scholar 

  49. Reiley, W., Zhang, M., Wu, X., Graner, E. & Sun, S.-C. Regulation of the deubiquitinating enzyme CYLD by IκB kinase γ-dependent phosphorylation. Mol. Cell. Biol. 25, 3886–3895 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Reiley, W.W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat. Immunol. 7, 411–417 (2006).

    CAS  PubMed  Google Scholar 

  51. Uhlik, M. et al. NF-κB-inducing kinase and IκB kinase participate in human T-cell leukemia virus I Tax-mediated NF-κB activation. J. Biol. Chem. 273, 21132–21136 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amgen for Map3k14-deficent mice; the Water Eliza Hall Institute of Medical Research for Nfkb2Lym1 mice; S.S. Watowich (University of Texas MD Anderson Cancer Center) for Ifnar1−/− mice; S. Akira (Osaka University) for Flag-tagged IKKɛ (IKKi); G. Cheng (University of California, Los Ageles) for Flag-tagged mouse NIK and mouse NIK(S809A,S812A,S815A) expressed by a pcDNA vector; M. Karin (University of California, San Diego) for hemagglutinin-tagged IKKα and IKKα(SSEE); X. Qin (Sun Yat-Sen University) for packaging vectors psPAX2 and pMD2; C. Wang (Shanghai Institutes for Biological Sciences) for Flag-tagged TBK1 and TBK1(K38A); M.P. Cancro (University of Pennsylvania) for NIH3T3 cell lines; and personnel of the animal facility, flow cytometry, DNA analysis and histology core facilities at MD Anderson Cancer Center for technical assistance. Supported by the US National Institutes of Health (AI057555, AI064639, GM084459 and T32CA009598).

Author information

Authors and Affiliations

Authors

Contributions

J.J. designed and did the research, prepared the figures, and wrote part of the manuscript; Y.X., J.-H.C., J.Y., H.H., G.C.B., M.C. and X.C. contributed experiments; R.S. contributed reagents; and S.-C.S. designed the research and wrote the manuscript.

Corresponding author

Correspondence to Shao-Cong Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Table 1 (PDF 1166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, J., Xiao, Y., Chang, JH. et al. The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling. Nat Immunol 13, 1101–1109 (2012). https://doi.org/10.1038/ni.2423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing