Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The price of immunity

Abstract

Resistance mechanisms of the innate and adaptive immune responses prevent the colonization of foreign organisms in unwanted anatomical sites and participate in tissue repair and restoration of homeostasis after damage induced either by the invasion of pathogenic microbes or by the organism's response to them. The intensity of the response is controlled and limited by positive and negative feedback circuits that aim at preventing collateral tissue damage. In this Review we will discuss the protective and pathogenic effects of host–commensal microbiota mutualism on the immune response and illustrate some examples of collateral tissue and systemic damage caused by immunity to pathogens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crosstalk between an organism and its gut commensal microbiota has both potentiating and detrimental effects on the immune response.
Figure 2: Collateral damage by TH1-TH17 immune responses during infection with T. gondii.

Similar content being viewed by others

References

  1. Germain, R.N. Maintaining system homeostasis: the third law of Newtonian immunology. Nat. Immunol. 13, 902–906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Banchereau, J., Pascual, V. & O'Garra, A. From IL-2 to IL-37: a tale of anti-inflammatory cytokines. Nat. Immunol. 13, 925–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murray, P.J. & Smale, S.T. Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways. Nat. Immunol. 13, 916–924 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hooper, L.V., Littman, D.R. & Macpherson, A.J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science advance online publication, doi:10.1126/science.1225152 (26 July 2012).

  6. Matzinger, P. & Kamala, T. Tissue-based class control: the other side of tolerance. Nat. Rev. Immunol. 11, 221–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Raz, E. Organ-specific regulation of innate immunity. Nat. Immunol. 8, 3–4 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Matzinger, P. Friendly and dangerous signals: is the tissue in control? Nat. Immunol. 8, 11–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Cohn, M. Meanderings into the regulation of effector class by the immune system: derivation of the trauma model. Scand. J. Immunol. 76, 77–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Trinchieri, G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 30, 677–706 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Schenten, D. & Medzhitov, R. The control of adaptive immune responses by the innate immune system. Adv. Immunol. 109, 87–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Streilein, J.W. Pathologic lesions of GVH disease in hamsters: antigenic target versus 'innocent bystander'. Prog. Exp. Tumor Res. 16, 396–408 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Elson, C.O., Reilly, R.W. & Rosenberg, I.H. Small intestinal injury in the graft versus host reaction: an innocent bystander phenomenon. Gastroenterology 72, 886–889 (1977).

    CAS  PubMed  Google Scholar 

  14. Stearns-Kurosawa, D.J., Osuchowski, M.F., Valentine, C., Kurosawa, S. & Remick, D.G. The pathogenesis of sepsis. Annu. Rev. Pathol. 6, 19–48 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Nish, S. & Medzhitov, R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34, 629–636 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin, B., Ji, S., Maudsley, S. & Mattson, M.P. “Control” laboratory rodents are metabolically morbid: why it matters. Proc. Natl. Acad. Sci. USA 107, 6127–6133 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bowcock, A.M. Genome-wide association studies and infectious disease. Crit. Rev. Immunol. 30, 305–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Vannberg, F.O., Chapman, S.J. & Hill, A.V. Human genetic susceptibility to intracellular pathogens. Immunol. Rev. 240, 105–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Rock, K.L., Lai, J.J. & Kono, H. Innate and adaptive immune responses to cell death. Immunol. Rev. 243, 191–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rock, K.L., Latz, E., Ontiveros, F. & Kono, H. The sterile inflammatory response. Annu. Rev. Immunol. 28, 321–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Marichal, T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 17, 996–1002 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Barbalat, R., Ewald, S.E., Mouchess, M.L. & Barton, G.M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29, 185–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Molloy, M.J., Bouladoux, N. & Belkaid, Y. Intestinal microbiota: shaping local and systemic immune responses. Semin. Immunol. 24, 58–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Ivanov, I.I. & Littman, D. R. Segmented filamentous bacteria take the stage. Mucosal Immunol. 3, 209–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garrett, W.S. et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16, 208–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allen, I.C. et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 207, 1045–1056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med. 207, 1625–1636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garrett, W.S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lathrop, S.K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hand, T.W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science advance online publication, doi:10.1126/science.1220961 (23 August 2012).

  36. Kaser, A., Zeissig, S. & Blumberg, R.S. Inflammatory bowel disease. Annu. Rev. Immunol. 28, 573–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abraham, C. & Cho, J.H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hviid, A., Svanstrom, H. & Frisch, M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 60, 49–54 (2011).

    Article  PubMed  Google Scholar 

  39. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn?s disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fritz, T., Niederreiter, L., Adolph, T., Blumberg, R.S. & Kaser, A. Crohn?s disease: NOD2, autophagy and ER stress converge. Gut 60, 1580–1588 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Ahern, P.P., Izcue, A., Maloy, K.J. & Powrie, F. The interleukin-23 axis in intestinal inflammation. Immunol. Rev. 226, 147–159 (2008).

    Article  PubMed  Google Scholar 

  42. Abraham, C. & Cho, J.H. IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu. Rev. Med. 60, 97–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Glocker, E.O., Kotlarz, D., Klein, C., Shah, N. & Grimbacher, B. IL-10 and IL-10 receptor defects in humans. Ann. NY Acad. Sci. 1246, 102–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Davidson, N.J., Fort, M.M., Muller, W., Leach, M.W. & Rennick, D.M. Chronic colitis in IL-10−/− mice: insufficient counter regulation of a Th1 response. Int. Rev. Immunol. 19, 91–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Fry, L. & Baker, B.S. Triggering psoriasis: the role of infections and medications. Clin. Dermatol. 25, 606–615 (2007).

    Article  PubMed  Google Scholar 

  46. Fahlén, A., Engstrand, L., Baker, B.S., Powles, A. & Fry, L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch. Dermatol. Res. 304, 15–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Grice, E.A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Valdimarsson, H., Thorleifsdottir, R.H., Sigurdardottir, S.L., Gudjonsson, J.E. & Johnston, A. Psoriasis–as an autoimmune disease caused by molecular mimicry. Trends Immunol. 30, 494–501 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Brenchley, J.M. & Douek, D.C. Microbial translocation across the GI tract. Annu. Rev. Immunol. 30, 149–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kamat, A., Ancuta, P., Blumberg, R.S. & Gabuzda, D. Serological markers for inflammatory bowel disease in AIDS patients with evidence of microbial translocation. PLoS ONE 5, e15533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang, W. et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J. Infect. Dis. 199, 1177–1185 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Brenchley, J.M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Sandler, N.G. & Douek, D.C. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat. Rev. Microbiol. 10, 655–666 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Klatt, N.R. et al. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. advance online publication, doi:10.1038/mi.2012.38 (30 May 2012).

    Article  CAS  PubMed  Google Scholar 

  55. Després, J.P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Burcelin, R., Garidou, L. & Pomie, C. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin. Immunol. 24, 67–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Kanneganti, T.D. & Dixit, V.D. Immunological complications of obesity. Nat. Immunol. 13, 707–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Donohoe, C.L., Ryan, A.M. & Reynolds, J.V. Cancer cachexia: mechanisms and clinical implications. Gastroenterol. Res. Pract. 2011, 601434 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang, Z., Zhao, C., Moya, R. & Davies, J.D. A novel role for CD4+ T cells in the control of cachexia. J. Immunol. 181, 4676–4684 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Chervonsky, A.V. Intestinal commensals: influence on immune system and tolerance to pathogens. Curr. Opin. Immunol. 24, 255–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Taurog, J.D., Richardson, J.A., Croft, J.T., Simmons, W.A. & Zhou, M. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, H.J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ochoa-Repáraz, J. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Ochoa-Repáraz, J., Mielcarz, D.W., Haque-Begum, S. & Kasper, L.H. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes 1, 103–108 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee, Y.K., Menezes, J.S., Umesaki, Y. & Mazmanian, S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4615–4622 (2011).

    Article  PubMed  Google Scholar 

  66. Yanagisawa, N., Haruta, I., Kikuchi, K., Shibata, N. & Yagi, J. Are dysregulated inflammatory responses to commensal bacteria involved in the pathogenesis of hepatobiliary-pancreatic autoimmune disease? An analysis using mice models of primary biliary cirrhosis and autoimmune pancreatitis. ISRN Gastroenterol. published online, doi:10.5402/2011/513514 (15 June 2011).

  67. Brandon, J.A., Jennings, C.D., Kaplan, A.M. & Bryson, J.S. Murine syngeneic graft-versus-host disease is responsive to broad-spectrum antibiotic therapy. J. Immunol. 186, 3726–3734 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Wen, L. et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108, 5354–5359 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Abt, M.C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ma, X. & Trinchieri, G. Regulation of interleukin-12 production in antigen-presenting cells. Adv. Immunol. 79, 55–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Aste-Amezaga, M., Ma, X., Sartori, A. & Trinchieri, G. Molecular mechanisms of the induction of IL-12 and its inhibition by IL- 10. J. Immunol. 160, 5936–5944 (1998).

    CAS  PubMed  Google Scholar 

  73. Gerosa, F. et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J. Exp. Med. 205, 1447–1461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wirtz, S., Billmeier, U., McHedlidze, T., Blumberg, R.S. & Neurath, M.F. Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology 141, 1875–1886 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Laouar, Y., Sutterwala, F.S., Gorelik, L. & Flavell, R.A. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat. Immunol. 6, 600–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Goldszmid, R.S. et al. TAP-1 indirectly regulates CD4+ T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-gamma production. J. Exp. Med. 204, 2591–2602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Goldszmid, R.S. et al. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36, 1047–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gazzinelli, R.T. et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α. J. Immunol. 157, 798–805 (1996).

    CAS  PubMed  Google Scholar 

  79. Egan, C.E., Cohen, S.B. & Denkers, E.Y. Insights into inflammatory bowel disease using Toxoplasma gondii as an infectious trigger. Immunol. Cell Biol. 90, 668–675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heimesaat, M.M. et al. Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J. Immunol. 177, 8785–8795 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Muñoz, M. et al. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J. Exp. Med. 206, 3047–3059 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Benson, A., Pifer, R., Behrendt, C.L., Hooper, L.V. & Yarovinsky, F. Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell Host Microbe 6, 187–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schulthess, J. et al. Interleukin-15-dependent NKp46+ innate lymphoid cells control Intestinal inflammation by recruiting inflammatory monocytes. Immunity 37, 108–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Craven, M. et al. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn?s disease. PLoS ONE 7, e41594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Braciale, T.J., Sun, J. & Kim, T.S. Regulating the adaptive immune response to respiratory virus infection. Nat. Rev. Immunol. 12, 295–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Teijaro, J.R. et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146, 980–991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, K.L., Suzuki, Y., Nakano, H., Ramsburg, E. & Gunn, M.D. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 180, 2562–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shahangian, A. et al. Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J. Clin. Invest. 119, 1910–1920 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Navarini, A.A. et al. Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses. Proc. Natl. Acad. Sci. USA 103, 15535–15539 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rayamajhi, M., Humann, J., Kearney, S., Hill, K.K. & Lenz, L.L. Antagonistic crosstalk between type I and II interferons and increased host susceptibility to bacterial infections. Virulence 1, 418–422 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ling, P.D., Warren, M.K. & Vogel, S.N. Antagonistic effect of interferon-β on the interferon-gamma-induced expression of Ia antigen in murine macrophages. J. Immunol. 135, 1857–1863 (1985).

    CAS  PubMed  Google Scholar 

  93. Snelgrove, R.J. et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat. Immunol. 9, 1074–1083 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Goulding, J. et al. Lowering the threshold of lung innate immune cell activation alters susceptibility to secondary bacterial superinfection. J. Infect. Dis. 204, 1086–1094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gautier, G. et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J. Exp. Med. 201, 1435–1446 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Byrnes, A.A. et al. Type I interferons and IL-12: convergence and cross-regulation among mediators of cellular immunity. Eur. J. Immunol. 31, 2026–2034 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Karp, C.L. et al. Mechanism of suppression of cell-mediated immunity by measles virus. Science 273, 228–231 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Noone, C.M. et al. Novel mechanism of immunosuppression by influenza virus haemagglutinin: selective suppression of interleukin 12 p35 transcription in murine bone marrow-derived dendritic cells. J. Gen. Virol. 86, 1885–1890 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Negishi, H. et al. Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat. Immunol. 13, 659–666 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Kane, M. et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334, 245–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kuss, S.K. et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334, 249–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jude, B.A. et al. Subversion of the innate immune system by a retrovirus. Nat. Immunol. 4, 573–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn?s disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barber, D.L., Andrade, B.B., Sereti, I. & Sher, A. Immune reconstitution inflammatory syndrome: the trouble with immunity when you had none. Nat. Rev. Microbiol. 10, 150–156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Müller, M. et al. Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect. Dis. 10, 251–261 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Khatri, B.O. et al. Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function. Neurology 72, 402–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sun, H.Y. & Singh, N. Opportunistic infection-associated immune reconstitution syndrome in transplant recipients. Clin. Infect. Dis. 53, 168–176 (2011).

    Article  PubMed  Google Scholar 

  109. Leonard, J.P. et al. Effects of single-dose interleukin-12 exposure on interleukin-12- associated toxicity and interferon-γ production. Blood 90, 2541–2548 (1997).

    CAS  PubMed  Google Scholar 

  110. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Hodi, F.S. et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl. Acad. Sci. USA 105, 3005–3010 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chisari, F.V., Isogawa, M. & Wieland, S.F. Pathogenesis of hepatitis B virus infection. Pathol. Biol. (Paris) 58, 258–266 (2010).

    Article  CAS  Google Scholar 

  113. Fallot, G., Neuveut, C. & Buendia, M.A. Diverse roles of hepatitis B virus in liver cancer. Curr. Opin Virol. 2, 467–473 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Fung, J., Lai, C.L. & Yuen, M.F. Hepatitis B and C virus-related carcinogenesis. Clin. Microbiol. Infect. 15, 964–970 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. McGivern, D.R. & Lemon, S.M. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 30, 1969–1983 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Moore, P.S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer 10, 878–889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dolberg, D.S., Hollingsworth, R., Hertle, M. & Bissell, M.J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Trinchieri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldszmid, R., Trinchieri, G. The price of immunity. Nat Immunol 13, 932–938 (2012). https://doi.org/10.1038/ni.2422

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2422

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing