Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Transcription factor Foxp3 and its protein partners form a complex regulatory network

Abstract

The transcription factor Foxp3 is indispensible for the differentiation and function of regulatory T cells (Treg cells). To gain insights into the molecular mechanisms of Foxp3-mediated gene expression, we purified Foxp3 complexes and explored their composition. Biochemical and mass-spectrometric analyses revealed that Foxp3 forms multiprotein complexes of 400–800 kDa or larger and identified 361 associated proteins, 30% of which were transcription related. Foxp3 directly regulated expression of a large proportion of the genes encoding its cofactors. Some transcription factor partners of Foxp3 facilitated its expression. Functional analysis of the cooperation of Foxp3 with one such partner, GATA-3, provided additional evidence for a network of transcriptional regulation afforded by Foxp3 and its associates to control distinct aspects of Treg cell biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for purification of Foxp3-associated proteins.
Figure 2: Foxp3 forms large protein complexes with its partners.
Figure 3: Functional annotation of Foxp3-associated proteins.
Figure 4: A large proportion of Foxp3-associated factors are also transcriptional targets of Foxp3.
Figure 5: Foxp3-Gata3 gene regulatory module in Treg cells.
Figure 6: A subset of genes regulated by Foxp3 and GATA-3 in Treg cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Josefowicz, S.Z., Lu, L.F., Rudensky, A.Y. & Regulatory, T. Cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    CAS  PubMed  Google Scholar 

  3. Godfrey, V.L., Wilkinson, J.E. & Russell, L.B. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 138, 1379–1387 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bennett, C.L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Wildin, R.S. & Freitas, A. IPEX and FOXP3: clinical and research perspectives. J. Autoimmun. 25 (suppl.), 56–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Williams, L.M. & Rudensky, A.Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8, 277–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. van der Vliet, H.J. & Nieuwenhuis, E.E. IPEX as a result of mutations in FOXP3. Clin. Dev. Immunol. 2007, 89017 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Le Bras, S. & Geha, R.S. IPEX and the role of Foxp3 in the development and function of human Tregs. J. Clin. Invest. 116, 1473–1475 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ziegler, S.F. FOXP3: of mice and men. Annu. Rev. Immunol. 24, 209–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl. Acad. Sci. USA 104, 4571–4576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, B. et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int. Immunol. 19, 825–835 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Chae, W.J., Henegariu, O., Lee, S.K. & Bothwell, A.L. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc. Natl. Acad. Sci. USA 103, 9631–9636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Pan, F. et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325, 1142–1146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Morkowski, S. et al. T cell recognition of major histocompatibility complex class II complexes with invariant chain processing intermediates. J. Exp. Med. 182, 1403–1413 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. de Boer, E. et al. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 100, 7480–7485 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y.I. et al. Proteomic analysis of in vivo-assembled pre-mRNA splicing complexes expands the catalog of participating factors. Nucleic Acids Res. 35, 3928–3944 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tyagi, A., Ryme, J., Brodin, D., Ostlund Farrants, A.K. & Visa, N. SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet. 5, e1000470 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Samstein, R.M. et al. Foxp3 exploits a preexistent enhancer landscape for regulatory T cell lineage specification. Cell (in the press).

  27. Rudra, D. et al. Runx-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 10, 1170–1177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitoh, A. et al. Indispensable role of the Runx1-Cbfβ transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 31, 609–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ruan, Q. et al. Development of Foxp3(+) regulatory t cells is driven by the c-Rel enhanceosome. Immunity 31, 932–940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y., Su, M.A. & Wan, Y.Y. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35, 337–348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wohlfert, E.A. et al. GATA3 controls Foxp3 regulatory T cell fate during inflammation in mice. J. Clin. Invest. 121, 4503–4515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vanvalkenburgh, J. et al. Critical role of Bcl11b in suppressor function of T regulatory cells and prevention of inflammatory bowel disease. J. Exp. Med. 208, 2069–2081 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mouly, E. et al. The Ets-1 transcription factor controls the development and function of natural regulatory T cells. J. Exp. Med. 207, 2113–2125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, L. et al. Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity 33, 313–325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, G. et al. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity 35, 299–311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou, Z., Song, X., Li, B. & Greene, M.I. FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity. Immunol. Res. 42, 19–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458, 351–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dang, E.V. et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Darce, J. et al. An N-terminal mutation of the foxp3 transcription factor alleviates arthritis but exacerbates diabetes. Immunity 36, 731–741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bettini, M.L. et al. Loss of epigenetic modification driven by the foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36, 717–730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klunker, S. et al. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. J. Exp. Med. 206, 2701–2715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Langlais, D., Couture, C., Balsalobre, A. & Drouin, J. The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome. Mol. Cell 47, 38–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rubtsov, Y.P. et al. IL-10 produced by regulatory T cells contributes to their suppressor function by limiting inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Lee, A. Bravo, J. Herlihy and J. Gerard for help with the mouse colony management and technical assistance; I.-C. Ho (Harvard Medical School) for Gata3fl/fl mice, D. Littman (New York University) for Runx1 antibody, I. Taniuchi (RIKEN Research Center for Allergy and Immunology) for Cbfβ andtibody and K. Georgopoulos (Massachusetts General Hospital) for Ikzf1 and Ikzf3 antibodies. This work was supported by US National Institutes of Health R37 AI034206 grant and the Howard Hughes Medical Institute (A.Y.R.). D.R. was supported by Arthritis Foundation postdoctoral fellowship. A.C. is supported by the Irvington Institute Fellowship Program of the Cancer Research Institute. R.E.N. is supported by National Institutes of Health Medical Scientist Training Program grant GM07739 and National Institute of Neurological Disorders and Stroke grant 1F31NS073203-01. R.M.S. is supported by National Institutes of Health DK091968 and Medical Scientist Training Program GM07739 grants.

Author information

Authors and Affiliations

Authors

Contributions

D.R. designed and performed the majority of experiments, analyzed data and wrote the manuscript; P.d. performed chromatography and protein purifications, and was involved in mass-spectrometric analysis; A.C. was involved in co-immunoprecipitation studies; R.E.N. was involved in functional analysis of Gata3fl/fl Foxp3-YFP-Cre mice; R.M.S. performed Foxp3 ChIP-seq and gene-expression analyses in Treg and TFN cells; A.A. and C.L. performed computational and statistical analysis of ChIP-Seq and gene expression data sets; S.A.S. and D.R.G. assisted with mass-spectrometric analyses; A.Y.R. directed the project, was involved in design of experiments, data analysis and interpretation, and wrote the manuscript.

Corresponding author

Correspondence to Alexander Y Rudensky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 5 (PDF 1450 kb)

Supplementary Table 1

Foxp3-associated proteins in TCli cells and ex vivo isolated Treg cells and cumulative abundance of of Foxp3 associated proteins. (XLSX 67 kb)

Supplementary Table 2

GO term enrichment of the “molecular function” category of Foxp3-associated proteins and GO term enrichment of the “biological process” category of Foxp3-associated proteins. (XLSX 34 kb)

Supplementary Table 3

Foxp3 occupied regions within the gene loci encoding transcription-related Foxp3 interacting proteins. (XLSX 23 kb)

Supplementary Table 4

Genomic regions co-occupied by Foxp3 and Gata3. (XLSX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudra, D., deRoos, P., Chaudhry, A. et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 13, 1010–1019 (2012). https://doi.org/10.1038/ni.2402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing