Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T-bet in disease

Abstract

The activation of immune-defense mechanisms in response to a microbial attack must be robust and appropriately tailored to fight particular types of pathogens. Infection with intracellular microorganisms elicits a type 1 inflammatory response characterized by mobilization of T helper type 1 (TH1) cells to the site of infection, where they are responsible for the recruitment and activation of macrophages. At the center of the type 1 inflammatory response is the transcription factor T-bet, a critical regulator of the TH1 differentiation program. T-bet induces the production of interferon-γ (IFN-γ) and orchestrates the TH1 cell–migratory program by regulating the expression of chemokines and chemokine receptors. However, tight regulation of the type 1 inflammatory response is essential for the prevention of immunopathology and the development of organ-specific autoimmunity. In this review, we discuss how T-bet expression drives autoaggressive and inflammatory processes and how its function in vivo must be delicately balanced to avoid disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of T-bet in the differentiation of helper T cells.

Katie Vicari

Figure 2: Role of T-bet in immune response to pathogens.

Katie Vicari

Figure 3: Role of T-bet in the pathogenesis of autoimmune diabetes.

Katie Vicari

Figure 4: Role of T-bet in the pathogenesis of rheumatoid arthritis.

Katie Vicari

Similar content being viewed by others

References

  1. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  2. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hwang, E.S., Szabo, S.J., Schwartzberg, P.L. & Glimcher, L.H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    CAS  PubMed  Google Scholar 

  7. Lazarevic, V. et al. T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat. Immunol. 12, 96–104 (2011).

    CAS  PubMed  Google Scholar 

  8. Villarino, A.V., Gallo, E. & Abbas, A.K. STAT1-activating cytokines limit Th17 responses through both T-bet-dependent and -independent mechanisms. J. Immunol. 185, 6461–6471 (2010).

    CAS  PubMed  Google Scholar 

  9. Esensten, J.H., Lee, M.R., Glimcher, L.H. & Bluestone, J.A. T-bet-deficient NOD mice are protected from diabetes due to defects in both T cell and innate immune system function. J. Immunol. 183, 75–82 (2009).

    CAS  PubMed  Google Scholar 

  10. Wang, J. et al. Transcription factor T-bet regulates inflammatory arthritis through its function in dendritic cells. J. Clin. Invest. 116, 414–421 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sullivan, B.M., Juedes, A., Szabo, S.J., von Herrath, M. & Glimcher, L.H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl. Acad. Sci. USA 100, 15818–15823 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Peng, S.L., Szabo, S.J. & Glimcher, L.H. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc. Natl. Acad. Sci. USA 99, 5545–5550 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Va14i NKT cells. Immunity 20, 477–494 (2004).

    CAS  PubMed  Google Scholar 

  14. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    CAS  PubMed  Google Scholar 

  15. Lighvani, A.A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. USA 98, 15137–15142 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Schulz, E.G., Mariani, L., Radbruch, A. & Hofer, T. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-γ and interleukin-12. Immunity 30, 673–683 (2009).

    CAS  PubMed  Google Scholar 

  18. Hu, X. & Ivashkiv, L.B. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jenner, R.G. et al. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc. Natl. Acad. Sci. USA 106, 17876–17881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lord, G.M. et al. T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 106, 3432–3439 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sullivan, B.M. et al. Increased susceptibility of mice lacking T-bet to infection with Mycobacterium tuberculosis correlates with increased IL-10 and decreased IFN-γ production. J. Immunol. 175, 4593–4602 (2005).

    CAS  PubMed  Google Scholar 

  22. Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    CAS  PubMed  Google Scholar 

  23. Hultgren, O.H., Verdrengh, M. & Tarkowski, A. T-box transcription-factor-deficient mice display increased joint pathology and failure of infection control during staphylococcal arthritis. Microbes Infect. 6, 529–535 (2004).

    CAS  PubMed  Google Scholar 

  24. Ravindran, R., Foley, J., Stoklasek, T., Glimcher, L.H. & McSorley, S.J. Expression of T-bet by CD4 T cells is essential for resistance to Salmonella infection. J. Immunol. 175, 4603–4610 (2005).

    CAS  PubMed  Google Scholar 

  25. Neurath, M.F. et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J. Exp. Med. 195, 1129–1143 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lovett-Racke, A.E. et al. Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21, 719–731 (2004).

    CAS  PubMed  Google Scholar 

  28. Juedes, A.E., Rodrigo, E., Togher, L., Glimcher, L.H. & von Herrath, M.G. T-bet controls autoaggressive CD8 lymphocyte responses in type 1 diabetes. J. Exp. Med. 199, 1153–1162 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Flynn, J.L. et al. An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    CAS  PubMed  Google Scholar 

  30. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    CAS  PubMed  Google Scholar 

  31. Harty, J.T. & Bevan, M.J. Specific immunity to Listeria monocytogenes in the absence of IFN γ. Immunity 3, 109–117 (1995).

    CAS  PubMed  Google Scholar 

  32. Way, S.S. & Wilson, C.B. Cutting edge: immunity and IFN-γ production during Listeria monocytogenes infection in the absence of T-bet. J. Immunol. 173, 5918–5922 (2004).

    CAS  PubMed  Google Scholar 

  33. Fuss, I.J. et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol. 157, 1261–1270 (1996).

    CAS  PubMed  Google Scholar 

  34. Plevy, S.E. et al. A role for TNF-α and mucosal T helper-1 cytokines in the pathogenesis of Crohn's disease. J. Immunol. 159, 6276–6282 (1997).

    CAS  PubMed  Google Scholar 

  35. Targan, S.R., Deem, R.L., Liu, M., Wang, S. & Nel, A. Definition of a lamina propria T cell responsive state. Enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J. Immunol. 154, 664–675 (1995).

    CAS  PubMed  Google Scholar 

  36. Matsuoka, K. et al. T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn's disease. Gut 53, 1303–1308 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, Y., Xu, J., Niu, Y., Bromberg, J.S. & Ding, Y. T-bet and eomesodermin play critical roles in directing T cell differentiation to Th1 versus Th17. J. Immunol. 181, 8700–8710 (2008).

    CAS  PubMed  Google Scholar 

  38. Sasaki, Y. et al. Identification of a novel type 1 diabetes susceptibility gene, T-bet. Hum. Genet. 115, 177–184 (2004).

    CAS  PubMed  Google Scholar 

  39. Hultgren, B., Huang, X., Dybdal, N. & Stewart, T.A. Genetic absence of γ-interferon delays but does not prevent diabetes in NOD mice. Diabetes 45, 812–817 (1996).

    CAS  PubMed  Google Scholar 

  40. Serreze, D.V. et al. Interferon-gamma receptor signaling is dispensable in the development of autoimmune type 1 diabetes in NOD mice. Diabetes 49, 2007–2011 (2000).

    CAS  PubMed  Google Scholar 

  41. Kaplan, M.H., Schindler, U., Smiley, S.T. & Grusby, M.J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313–319 (1996).

    CAS  PubMed  Google Scholar 

  42. Kurata, H., Lee, H.J., O'Garra, A. & Arai, N. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 11, 677–688 (1999).

    CAS  PubMed  Google Scholar 

  43. Zhu, J., Guo, L., Watson, C.J., Hu-Li, J. & Paul, W.E. Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J. Immunol. 166, 7276–7281 (2001).

    CAS  PubMed  Google Scholar 

  44. Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    CAS  PubMed  Google Scholar 

  45. Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 3, 643–651 (2002).

    CAS  PubMed  Google Scholar 

  46. Finotto, S. et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295, 336–338 (2002).

    CAS  PubMed  Google Scholar 

  47. Finotto, S. et al. Asthmatic changes in mice lacking T-bet are mediated by IL-13. Int. Immunol. 17, 993–1007 (2005).

    CAS  PubMed  Google Scholar 

  48. Munthe-Kaas, M.C. et al. T cell-specific T-box transcription factor haplotype is associated with allergic asthma in children. J. Allergy Clin. Immunol. 121, 51–56 (2008).

    CAS  PubMed  Google Scholar 

  49. Raby, B.A. et al. T-bet polymorphisms are associated with asthma and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 173, 64–70 (2006).

    CAS  PubMed  Google Scholar 

  50. Kiwamoto, T. et al. Transcription factors T-bet and GATA-3 regulate development of airway remodeling. Am. J. Respir. Crit. Care Med. 174, 142–151 (2006).

    CAS  PubMed  Google Scholar 

  51. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  52. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  53. Mangan, P.R. et al. Transforming growth factor-beta induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  54. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  55. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    CAS  PubMed  Google Scholar 

  57. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    CAS  PubMed  Google Scholar 

  58. Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966 (2007).

    PubMed  Google Scholar 

  59. Schraml, B.U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, F., Meng, G. & Strober, W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 9, 1297–1306 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–627 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bending, D. et al. Epigenetic changes at il12rb2 and tbx21 in relation to plasticity behavior of th17 cells. J. Immunol. 186, 3373–3382 (2011).

    CAS  PubMed  Google Scholar 

  63. Doodes, P.D. et al. IFN-γ regulates the requirement for IL-17 in proteoglycan-induced arthritis. J. Immunol. 184, 1552–1559 (2010).

    CAS  PubMed  Google Scholar 

  64. Rutitzky, L.I., Smith, P.M. & Stadecker, M.J. T-bet protects against exacerbation of schistosome egg-induced immunopathology by regulating Th17-mediated inflammation. Eur. J. Immunol. 39, 2470–2481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yuan, X. et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J. Exp. Med. 205, 3133–3144 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo, S., Cobb, D. & Smeltz, R.B. T-bet inhibits the in vivo differentiation of parasite-specific CD4+ Th17 cells in a T cell-intrinsic manner. J. Immunol. 182, 6179–6186 (2009).

    CAS  PubMed  Google Scholar 

  67. Durrant, D.M., Gaffen, S.L., Riesenfeld, E.P., Irvin, C.G. & Metzger, D.W. Development of allergen-induced airway inflammation in the absence of T-bet regulation is dependent on IL-17. J. Immunol. 183, 5293–5300 (2009).

    CAS  PubMed  Google Scholar 

  68. Furuta, S. et al. Overlapping and distinct roles of STAT4 and T-bet in the regulation of T cell differentiation and allergic airway inflammation. J. Immunol. 180, 6656–6662 (2008).

    CAS  PubMed  Google Scholar 

  69. Manoury-Schwartz, B. et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-γ receptors. J. Immunol. 158, 5501–5506 (1997).

    CAS  PubMed  Google Scholar 

  70. Vermeire, K. et al. Accelerated collagen-induced arthritis in IFN-γ receptor-deficient mice. J. Immunol. 158, 5507–5513 (1997).

    CAS  PubMed  Google Scholar 

  71. Nistala, K. et al. Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc. Natl. Acad. Sci. USA 107, 14751–14756 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cannon, G.W. et al. Double-blind trial of recombinant γ-interferon versus placebo in the treatment of rheumatoid arthritis. Arthritis Rheum. 32, 964–973 (1989).

    CAS  PubMed  Google Scholar 

  73. Panitch, H.S., Hirsch, R.L., Schindler, J. & Johnson, K.P. Treatment of multiple sclerosis with γ interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    CAS  PubMed  Google Scholar 

  74. Skurkovich, S. et al. Randomized study of antibodies to IFN-γ and TNF-α in secondary progressive multiple sclerosis. Mult. Scler. 7, 277–284 (2001).

    CAS  PubMed  Google Scholar 

  75. Ferber, I.A. et al. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5–7 (1996).

    CAS  PubMed  Google Scholar 

  76. Willenborg, D.O., Fordham, S., Bernard, C.C., Cowden, W.B. & Ramshaw, I.A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  77. Frisullo, G. et al. pSTAT1, pSTAT3, and T-bet expression in peripheral blood mononuclear cells from relapsing-remitting multiple sclerosis patients correlates with disease activity. J. Neurosci. Res. 84, 1027–1036 (2006).

    CAS  PubMed  Google Scholar 

  78. Nos, C. et al. Clinical impact of intravenous methylprednisolone in attacks of multiple sclerosis. Mult. Scler. 10, 413–416 (2004).

    CAS  PubMed  Google Scholar 

  79. Liberman, A.C. et al. The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein interaction. FASEB J. 21, 1177–1188 (2007).

    CAS  PubMed  Google Scholar 

  80. Frisullo, G. et al. Glucocorticoid treatment reduces T-bet and pSTAT1 expression in mononuclear cells from relapsing remitting multiple sclerosis patients. Clin. Immunol. 124, 284–293 (2007).

    CAS  PubMed  Google Scholar 

  81. Drulovic, J. et al. Expression of Th1 and Th17 cytokines and transcription factors in multiple sclerosis patients: does baseline T-bet mRNA predict the response to interferon-beta treatment? J. Neuroimmunol. 215, 90–95 (2009).

    CAS  PubMed  Google Scholar 

  82. Chen, Y. et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest. 116, 1317–1326 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, X.O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu, Y. et al. IL-17RC is required for IL-17A- and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 184, 4307–4316 (2010).

    CAS  PubMed  Google Scholar 

  85. Yang, Y. et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J. Exp. Med. 206, 1549–1564 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Reboldi, A. et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

    CAS  PubMed  Google Scholar 

  87. Kebir, H. et al. Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 66, 390–402 (2009).

    CAS  PubMed  Google Scholar 

  88. Abromson-Leeman, S., Bronson, R.T. & Dorf, M.E. Encephalitogenic T cells that stably express both T-bet and RORγt consistently produce IFNγ but have a spectrum of IL-17 profiles. J. Neuroimmunol. 215, 10–24 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chitnis, T. et al. Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J. Clin. Invest. 108, 739–747 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  PubMed  Google Scholar 

  92. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  95. Garrett, W.S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dardalhon, V. et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+IL-10+Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9–producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    CAS  PubMed  Google Scholar 

  98. Jager, A., Dardalhon, V., Sobel, R.A., Bettelli, E. & Kuchroo, V.K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183, 7169–7177 (2009).

    PubMed  Google Scholar 

  99. Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nurieva, R.I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 206, 51–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pearce, E.L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003).

    CAS  PubMed  Google Scholar 

  103. Intlekofer, A.M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    CAS  PubMed  Google Scholar 

  104. Intlekofer, A.M. et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321, 408–411 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Joshi, N.S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rao, R.R., Li, Q., Odunsi, K. & Shrikant, P.A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32, 67–78 (2010).

    PubMed  PubMed Central  Google Scholar 

  107. Oldstone, M.B., Nerenberg, M., Southern, P., Price, J. & Lewicki, H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65, 319–331 (1991).

    CAS  PubMed  Google Scholar 

  108. Ohashi, P.S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    CAS  PubMed  Google Scholar 

  109. Burrell, B.E., Csencsits, K., Lu, G., Grabauskiene, S. & Bishop, D.K. CD8+ Th17 mediate costimulation blockade-resistant allograft rejection in T-bet-deficient mice. J. Immunol. 181, 3906–3914 (2008).

    CAS  PubMed  Google Scholar 

  110. Rangachari, M. et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J. Exp. Med. 203, 2009–2019 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gerth, A.J., Lin, L. & Peng, S.L. T-bet regulates T-independent IgG2a class switching. Int. Immunol. 15, 937–944 (2003).

    CAS  PubMed  Google Scholar 

  112. Liu, N., Ohnishi, N., Ni, L., Akira, S. & Bacon, K.B. CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat. Immunol. 4, 687–693 (2003).

    CAS  PubMed  Google Scholar 

  113. Werneck, M.B., Lugo-Villarino, G., Hwang, E.S., Cantor, H. & Glimcher, L.H. T-bet plays a key role in NK-mediated control of melanoma metastatic disease. J. Immunol. 180, 8004–8010 (2008).

    CAS  PubMed  Google Scholar 

  114. Lugo-Villarino, G., Ito, S., Klinman, D.M. & Glimcher, L.H. The adjuvant activity of CpG DNA requires T-bet expression in dendritic cells. Proc. Natl. Acad. Sci. USA 102, 13248–13253 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lugo-Villarino, G., Maldonado-Lopez, R., Possemato, R., Penaranda, C. & Glimcher, L.H. T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. Proc. Natl. Acad. Sci. USA 100, 7749–7754 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lipscomb, M.W. et al. Ectopic T-bet expression licenses dendritic cells for IL-12-independent priming of type 1 T cells in vitro. J. Immunol. 183, 7250–7258 (2009).

    CAS  PubMed  Google Scholar 

  117. Veiga, P. et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. USA 107, 18132–18137 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Garrett, W.S. et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16, 208–219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hegazy, A.N. et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity 32, 116–128 (2010).

    CAS  PubMed  Google Scholar 

  120. Lee, Y.K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the US National Institutes of Health (P01 NS038037 and CA112663 to L.H.G.), the Danone Group and the Cancer Research Institute (V.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie H Glimcher.

Ethics declarations

Competing interests

L.H.G. is a member of the board of directors of and holds equity in Bristol Myers Squibb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarevic, V., Glimcher, L. T-bet in disease. Nat Immunol 12, 597–606 (2011). https://doi.org/10.1038/ni.2059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing