Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Origins of CD4+ effector and central memory T cells

Abstract

Lineage-committed effector CD4+ T cells are generated at the peak of the primary response and are followed by heterogeneous populations of central and effector memory cells. Here we review the evidence that T helper type 1 (TH1) effector cells survive the contraction phase of the primary response and become effector memory cells. We discuss the applicability of this idea to the TH2 cell, TH17 helper T cell, follicular helper T cell (TFH cell) and induced regulatory T cell lineages. We also discuss how central memory cells are formed, with an emphasis on the role of B cells in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simultaneous generation of TEM and TCM cells.

Similar content being viewed by others

References

  1. Davis, M.M. T cell receptor gene diversity and selection. Annu. Rev. Biochem. 59, 475–496 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Jenkins, M.K. et al. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19, 23–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Swain, S.L., Weinberg, A.D. & English, M. CD4+ T cell subsets. Lymphokine secretion of memory cells and of effector cells that develop from precursors in vitro. J. Immunol. 144, 1788–1799 (1990).

    CAS  PubMed  Google Scholar 

  4. Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Seder, R.A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Lohning, M. et al. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205, 53–61 (2008).This study shows that in vitro –derived CD4+ effector cells can become memory cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harrington, L.E., Janowski, K.M., Oliver, J.R., Zajac, A.J. & Weaver, C.T. Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452, 356–360 (2008).This paper shows that T H 1 effector cells can become memory cells in vivo.

    Article  CAS  PubMed  Google Scholar 

  11. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).This study defines effector and central memory cells.

    Article  CAS  PubMed  Google Scholar 

  12. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Pape, K.A. et al. Use of adoptive transfer of T-cell-antigen-receptor-transgenic T cell for the study of T-cell activation in vivo. Immunol. Rev. 156, 67–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Marzo, A.L. et al. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat. Immunol. 6, 793–799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Foulds, K.E. & Shen, H. Clonal competition inhibits the proliferation and differentiation of adoptively transferred TCR transgenic CD4 T cells in response to infection. J. Immunol. 176, 3037–3043 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Badovinac, V.P., Haring, J.S. & Harty, J.T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26, 827–841 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blair, D.A. & Lefrancois, L. Increased competition for antigen during priming negatively impacts the generation of memory CD4 T cells. Proc. Natl. Acad. Sci. USA 104, 15045–15050 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hataye, J., Moon, J.J., Khoruts, A., Reilly, C. & Jenkins, M.K. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312, 114–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Moon, J.J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pepper, M. et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat. Immunol. 11, 83–89 (2010).This was the first demonstration of population expansion, contraction and memory T cell formation by polyclonal pMHCII-specific CD4+ T cells induced by bacterial infection.

    Article  CAS  PubMed  Google Scholar 

  21. Stephens, R. & Langhorne, J. Effector memory TH1 CD4 T cells are maintained in a mouse model of chronic malaria. PLoS Pathog. 6, e1001208 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Colpitts, S.L., Dalton, N.M. & Scott, P. IL-7 receptor expression provides the potential for long-term survival of both CD62Lhigh central memory T cells and TH1 effector cells during Leishmania major infection. J. Immunol. 182, 5702–5711 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Surh, C.D., Boyman, O., Purton, J.F. & Sprent, J. Homeostasis of memory T cells. Immunol. Rev. 211, 154–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Homann, D., Teyton, L. & Oldstone, M.B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat. Med. 7, 913–919 (2001).This study provided first evidence that CD4+ memory T cells are less stable than are CD8+ memory T cells.

    Article  CAS  PubMed  Google Scholar 

  25. Lin, E. et al. Heterogeneity among viral antigen-specific CD4+ T cells and their de novo recruitment during persistent polyomavirus infection. J. Immunol. 185, 1692–1700 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Purton, J.F. et al. Antiviral CD4+ memory T cells are IL-15 dependent. J. Exp. Med. 204, 951–961 (2007).This study shows an IL-15-dependent mechanism of CD4+ memory T cell survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turtle, C.J., Swanson, H.M., Fujii, N., Estey, E.H. & Riddell, S.R. A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy. Immunity 31, 834–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stetson, D.B., Mohrs, M., Mallet-Designe, V., Teyton, L. & Locksley, R.M. Rapid expansion and IL-4 expression by Leishmania-specific naive helper T cells in vivo. Immunity 17, 191–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Zaph, C. et al. Persistence and function of central and effector memory CD4+ T cells following infection with a gastrointestinal helminth. J. Immunol. 177, 511–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Hendriks, J., Xiao, Y. & Borst, J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J. Exp. Med. 198, 1369–1380 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi, G. et al. Phenotype switching by inflammation-inducing polarized TH17 cells, but not by TH1 cells. J. Immunol. 181, 7205–7213 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Bending, D. et al. Highly purified TH17 cells from BDC2.5NOD mice convert into TH1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 119, 565–572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin-Orozco, N., Chung, Y., Chang, S.H., Wang, Y.H. & Dong, C.T. H17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into TH1 cells. Eur. J. Immunol. 39, 216–224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, Y.K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abromson-Leeman, S., Bronson, R.T. & Dorf, M.E. Encephalitogenic T cells that stably express both T-bet and RORγt consistently produce IFNγ but have a spectrum of IL-17 profiles. J. Neuroimmunol. 215, 10–24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Acosta-Rodriguez, E.V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Annunziato, F. et al. Phenotypic and functional features of human TH17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Lazarevic, V. et al. T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat. Immunol. 12, 96–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Ertelt, J.M. et al. Selective priming and expansion of antigen-specific Foxp3- CD4+ T cells during Listeria monocytogenes infection. J. Immunol. 182, 3032–3038 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. King, C., Tangye, S.G. & Mackay, C.R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Fazilleau, N., Mark, L., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Follicular helper T cells: lineage and location. Immunity 30, 324–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rasheed, A.U., Rahn, H.P., Sallusto, F., Lipp, M. & Muller, G. Follicular B helper T cell activity is confined to CXCR5hiICOShi CD4 T cells and is independent of CD57 expression. Eur. J. Immunol. 36, 1892–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, X. & Mosmann, T. In vivo priming of CD4 T cells that produce interleukin (IL)-2 but not IL-4 or interferon (IFN)-γ, and can subsequently differentiate into IL-4- or IFN-γ-secreting cells. J. Exp. Med. 194, 1069–1080 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Catron, D.M., Rusch, L.K., Hataye, J., Itano, A.A. & Jenkins, M.K. CD4+ T cells that enter the draining lymph nodes after antigen injection participate in the primary response and become central-memory cells. J. Exp. Med. 203, 1045–1054 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pearce, E.L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rutishauser, R.L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gudmundsdottir, H., Wells, A.D. & Turka, L.A. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol. 162, 5212–5223 (1999).

    CAS  PubMed  Google Scholar 

  57. Caserta, S., Kleczkowska, J., Mondino, A. & Zamoyska, R. Reduced functional avidity promotes central and effector memory CD4 T cell responses to tumor-associated antigens. J. Immunol. 185, 6545–6554 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Whitmire, J.K. et al. Requirement of B cells for generating CD4+ T cell memory. J. Immunol. 182, 1868–1876 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. McAdam, A.J. et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J. Immunol. 165, 5035–5040 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Kadkhoda, K. et al. TH1 cytokine responses fail to effectively control Chlamydia lung infection in ICOS ligand knockout mice. J. Immunol. 184, 3780–3788 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Bossaller, L. et al. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J. Immunol. 177, 4927–4932 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Pagán and J. Taylor for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc K Jenkins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pepper, M., Jenkins, M. Origins of CD4+ effector and central memory T cells. Nat Immunol 12, 467–471 (2011). https://doi.org/10.1038/ni.2038

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing