Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets

Abstract

During infection, naive CD8+ T cells differentiate into effector cells, which are armed to eliminate pathogens, and memory cells, which are poised to protect against reinfection. The transcriptional program that regulates terminal differentiation into short-lived effector-memory versus long-lived memory cells is not clearly defined. Through the use of mice expressing reporters for the DNA-binding inhibitors Id2 and Id3, we identified Id3hi precursors of long-lived memory cells before the peak of T cell population expansion or upregulation of cell-surface receptors that indicate memory potential. Deficiency in Id2 or Id3 resulted in loss of distinct CD8+ effector and memory populations, which demonstrated unique roles for these inhibitors of E-protein transcription factors. Furthermore, cytokines altered the expression of Id2 and Id3 differently, which provides insight into how external cues influence gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Id2-YFP and Id3-GFP reporters in CD8+ T cells during infection identifies distinct effector populations.
Figure 2: Expression of Id2-YFP and Id3-GFP during infection correlates with effector and memory precursor subsets.
Figure 3: The Id3-GFPhi effector CD8+ T cell population includes long-lived memory precursor cells before expression of KLRG-1 or CD127.
Figure 4: Early Id3 expression correlates with memory potential.
Figure 5: Id3 deficiency results in the defective formation of long-lived memory CD8+ T cells.
Figure 6: Id2-deficient CD8+ T cells upregulate Id3 and do not generate short-lived effector-memory cells.
Figure 7: Id3-GFP expression and Id2-YFP expression are inversely coregulated by cytokines.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Williams, M.A. & Bevan, M.J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kaech, S.M., Wherry, E.J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Jameson, S.C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Goldrath, A.W., Luckey, C.J., Park, R., Benoist, C. & Mathis, D. The molecular program induced in T cells undergoing homeostatic proliferation. Proc. Natl. Acad. Sci. USA 101, 16885–16890 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Opferman, J.T., Ober, B.T. & Ashton-Rickardt, P.G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Joshi, N.S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar, S. et al. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med. 205, 625–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Ma, A., Koka, R. & Burkett, P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu. Rev. Immunol. 24, 657–679 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Badovinac, V.P., Tvinnereim, A.R. & Harty, J.T. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science 290, 1354–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Kolumam, G.A., Thomas, S., Thompson, L.J., Sprent, J. & Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 202, 637–650 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Rubinstein, M.P. et al. IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood 112, 3704–3712 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Tinoco, R., Alcalde, V., Yang, Y., Sauer, K. & Zuniga, E.I. Cell-intrinsic transforming growth factor-beta signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 31, 145–157 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Badovinac, V.P., Porter, B.B. & Harty, J.T. CD8+ T cell contraction is controlled by early inflammation. Nat. Immunol. 5, 809–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Badovinac, V.P., Messingham, K.A., Jabbari, A., Haring, J.S. & Harty, J.T. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat. Med. 11, 748–756 (2005).

    Article  CAS  Google Scholar 

  16. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Kaech, S.M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Kalia, V. et al. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32, 91–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Hikono, H. et al. Activation phenotype, rather than central- or effector-memory phenotype, predicts the recall efficacy of memory CD8+ T cells. J. Exp. Med. 204, 1625–1636 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Hand, T.W., Morre, M. & Kaech, S.M. Expression of IL-7 receptor α is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc. Natl. Acad. Sci. USA 104, 11730–11735 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Gründemann, C. et al. The NK receptor KLRG1 is dispensable for virus-induced NK and CD8+ T-cell differentiation and function in vivo. Eur. J. Immunol. 40, 1303–1314 (2010).

    Article  PubMed  Google Scholar 

  22. Williams, M.A., Tyznik, A.J. & Bevan, M.J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441, 890–893 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Pipkin, M.E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Mitchell, D.M., Ravkov, E.V. & Williams, M.A. Distinct roles for IL-2 and IL-15 in the differentiation and survival of CD8+ effector and memory T cells. J. Immunol. 184, 6719–6730 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    Article  CAS  Google Scholar 

  26. Rutishauser, R.L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Sullivan, B.M., Juedes, A., Szabo, S.J., von Herrath, M. & Glimcher, L.H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl. Acad. Sci. USA 100, 15818–15823 (2003).

    Article  CAS  Google Scholar 

  28. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Banerjee, A. et al. Cutting edge: The transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche. J. Immunol. 185, 4988–4992 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Cannarile, M.A. et al. Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat. Immunol. 7, 1317–1325 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Murre, C. Helix-loop-helix proteins and lymphocyte development. Nat. Immunol. 6, 1079–1086 (2005).

    Article  CAS  Google Scholar 

  32. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Boos, M.D., Yokota, Y., Eberl, G. & Kee, B.L. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Monticelli, L.A. et al. Transcriptional regulator Id2 controls survival of hepatic NKT cells. Proc. Natl. Acad. Sci. USA 106, 19461–19466 (2009).

    Article  CAS  Google Scholar 

  35. Miyazaki, M. et al. The opposing roles of the transcription factor E2A and its antagonist Id3 that orchestrate and enforce the naive fate of T cells. Nat. Immunol. 12, 992–1001 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Rivera, R.R., Johns, C.P., Quan, J., Johnson, R.S. & Murre, C. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 12, 17–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Verykokakis, M., Boos, M.D., Bendelac, A. & Kee, B.L. SAP protein-dependent natural killer T-like cells regulate the development of CD8+ T cells with innate lymphocyte characteristics. Immunity 33, 203–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Verykokakis, M. et al. Inhibitor of DNA binding 3 limits development of murine slam-associated adaptor protein-dependent “innate” γδ T cells. PLoS ONE 5, e9303 (2010).

    Article  PubMed  Google Scholar 

  39. Weinreich, M.A., Odumade, O.A., Jameson, S.C. & Hogquist, K.A. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 11, 709–716 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Kee, B.L., Rivera, R.R. & Murre, C. Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-β. Nat. Immunol. 2, 242–247 (2001).

    Article  CAS  Google Scholar 

  41. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26, 133–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Badovinac, V.P., Haring, J.S. & Harty, J.T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26, 827–841 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, Y.C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat. Immunol. 11, 635–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Kedzierska, K. et al. Location rather than CD62L phenotype is critical in the early establishment of influenza-specific CD8+ T cell memory. Proc. Natl. Acad. Sci. USA 104, 9782–9787 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Schwartz, R., Engel, I., Fallahi-Sichani, M., Petrie, H.T. & Murre, C. Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. Proc. Natl. Acad. Sci. USA 103, 9976–9981 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. D'Cruz, L.M., Knell, J., Fujimoto, J.K. & Goldrath, A.W. An essential role for the transcription factor HEB in thymocyte survival, Tcra rearrangement and the development of natural killer T cells. Nat. Immunol. 11, 240–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Bain, G. et al. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat. Immunol. 2, 165–171 (2001).

    Article  CAS  Google Scholar 

  48. Savitsky, D., Cimmino, L., Kuo, T., Martins, G.A. & Calame, K. Multiple roles for Blimp-1 in B and T lymphocytes. Adv. Exp. Med. Biol. 596, 9–30 (2007).

    Article  PubMed  Google Scholar 

  49. Moskowitz, I.P. et al. A molecular pathway including Id2, Tbx5, and Nkx2–5 required for cardiac conduction system development. Cell 129, 1365–1376 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Agata, Y. et al. Regulation of T cell receptor β gene rearrangements and allelic exclusion by the helix-loop-helix protein, E47. Immunity 27, 871–884 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Barton, J. Hamerman, S. Turley, A. Fletcher, M. Rubinstein and members of the Goldrath laboratory for advice and critical review of the manuscript; and L. Shaw for help with figure design. Supported by the Cancer Research Institute, Pew Charitable Trust, the US National Institutes of Health (AI067545 and AI072117 to A.W.G.; and AI073587 to S.S.W.), University of California San Diego (Cellular and Molecular Genetics Training Grant to C.Y.Y.) and the R.E. Bob Smith Education Fund (H.S.L.).

Author information

Authors and Affiliations

Authors

Contributions

C.Y.Y. designed and completed the majority of experiments, analyzed and interpreted data, and wrote the manuscript; A.D.S. and R.R.R. generated the reporter mouse lines; J.A.B., J.K., E.Y. and K.C.L. did experiments and discussed and interpreted results; A.K.J. provided technical assistance; H.S.L. and S.S.W. discussed results and provided advice; L.M.D. and C.M. discussed and interpreted results and wrote the manuscript; and A.W.G. directed the study, analyzed and interpreted results, and wrote the manuscript.

Corresponding author

Correspondence to Ananda W Goldrath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Table 1 (PDF 1378 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Best, J., Knell, J. et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat Immunol 12, 1221–1229 (2011). https://doi.org/10.1038/ni.2158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing