Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia

An Erratum to this article was published on 01 October 2010

This article has been updated

Abstract

ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3′ untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the β-selection checkpoint without first expressing the T cell antigen receptor β-chain (TCRβ). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3′ untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of T-ALL in dKO mice.
Figure 2: Thymocyte development is perturbed before tumor development.
Figure 3: Higher Notch1 expression in dKO mice.
Figure 4: ZFP36L1 and ZFP36L2 exert suppression via interaction with sequences in the Notch1 3′ UTR.
Figure 5: Inhibition of Notch or reexpression of ZFP36L1 is toxic to tumor growth.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

Change history

  • 22 July 2010

    In the version of this article initially published, two labels in the key in Figure 1a are reversed. The correct labels are dKO (red line) and Control (blue line). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Georgescu, C. et al. A gene regulatory network armature for T lymphocyte specification. Proc. Natl. Acad. Sci. USA 105, 20100–20105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rothenberg, E.V. Negotiation of the T lineage fate decision by transcription-factor interplay and microenvironmental signals. Immunity 26, 690–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Rothenberg, E.V., Moore, J.E. & Yui, M.A. Launching the T-cell-lineage developmental programme. Nat. Rev. Immunol. 8, 9–21 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galante, P.A. et al. A comprehensive in silico expression analysis of RNA binding proteins in normal and tumor tissue: Identification of potential players in tumor formation. RNA Biol. 6, 426–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, G.A. et al. A pathogenetic role for TNFα in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Bell, S.E. et al. The RNA binding protein Zfp36l1 is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Dev. Dyn. 235, 3144–3155 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Stumpo, D.J. et al. Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family. Mol. Cell. Biol. 24, 6445–6455 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stumpo, D.J. et al. Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood 114, 2401–2410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blackshear, P.J. et al. Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. J. Biol. Chem. 278, 19947–19955 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J. & Wright, P.E. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat. Struct. Mol. Biol. 11, 257–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Emmons, J. et al. Identification of TTP mRNA targets in human dendritic cells reveals TTP as a critical regulator of dendritic cell maturation. RNA 14, 888–902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klein, U. et al. The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17, 28–40 2010).

    Article  CAS  PubMed  Google Scholar 

  14. Mayr, C. & Bartel, D.P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wiestner, A. et al. Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood 109, 4599–4606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sandberg, R., Neilson, J.R., Sarma, A., Sharp, P.A. & Burge, C.B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brennan, S.E. et al. The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res. 69, 5168–5176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jackson, R.S. II, Cho, Y.J. & Liang, P. TIS11D is a candidate pro-apoptotic p53 target gene. Cell Cycle 5, 2889–2893 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Baou, M. et al. Involvement of Tis11b, an AU-rich binding protein, in induction of apoptosis by rituximab in B cell chronic lymphocytic leukemia cells. Leukemia 23, 986–989 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Benjamin, D. & Moroni, C. mRNA stability and cancer: an emerging link? Expert Opin. Biol. Ther. 7, 1515–1529 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Dumont, C. et al. Rac GTPases play critical roles in early T-cell development. Blood 113, 3990–3998 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly, A.P. et al. Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J. 26, 3441–3450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Demarest, R.M., Ratti, F. & Capobianco, A.J. It′s T-ALL about Notch. Oncogene 27, 5082–5091 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. O'Neil, J. et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 107, 781–785 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. O'Connell, R.M., Rao, D.S., Chaudhuri, A.A. & Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10, 111–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Papadaki, O. et al. Control of thymic T cell maturation, deletion and egress by the RNA-binding protein HuR. J. Immunol. 182, 6779–6788 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Winandy, S., Wu, L., Wang, J.H. & Georgopoulos, K. Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J. Exp. Med. 190, 1039–1048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michie, A.M. & Zuniga-Pflucker, J.C. Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Semin. Immunol. 14, 311–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Michie, A.M. et al. Constitutive Notch signalling promotes CD4 CD8 thymocyte differentiation in the absence of the pre-TCR complex, by mimicking pre-TCR signals. Int. Immunol. 19, 1421–1430 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Campese, A.F. et al. Notch1-dependent lymphomagenesis is assisted by but does not essentially require pre-TCR signaling. Blood 108, 305–310 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ciofani, M. & Zuniga-Pflucker, J.C. Notch promotes survival of pre-T cells at the β-selection checkpoint by regulating cellular metabolism. Nat. Immunol. 6, 881–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Pear, W.S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Aster, J.C., Pear, W.S. & Blacklow, S.C. Notch signaling in leukemia. Annu. Rev. Pathol. 3, 587–613 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, X., Gounari, F., Protopopov, A., Khazaie, K. & von Boehmer, H. Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1. J. Exp. Med. 205, 2851–2861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonsalves, F.C. & Weisblat, D.A. MAPK regulation of maternal and zygotic Notch transcript stability in early development. Proc. Natl. Acad. Sci. USA 104, 531–536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Washburn, T. et al. Notch activity influences the αβ versus γδ T cell lineage decision. Cell 88, 833–843 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Keene, J.D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Moellering, R.E. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidlin, M. et al. The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J. 23, 4760–4769 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Benjamin, D., Schmidlin, M., Min, L., Gross, B. & Moroni, C. BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol. Cell. Biol. 26, 9497–9507 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maitra, S. et al. The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. RNA 14, 950–959 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Palomero, T., Dominguez, M. & Ferrando, A.A. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle 7, 965–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Weng, A.P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Fiorini, E. et al. Dynamic regulation of notch 1 and notch 2 surface expression during T cell development and activation revealed by novel monoclonal antibodies. J. Immunol. 183, 7212–7222 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Dumortier, A. et al. Notch activation is an early and critical event during T-cell leukemogenesis in Ikaros-deficient mice. Mol. Cell. Biol. 26, 209–220 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Clark (Kennedy Institute of Rheumatology, London) for the pcDNA3.myc.WT ZFP36L1 expression construct and pFLAG.CMV2-ZFP36L2; and J. Zuniga-Pflucker (University of Toronto) for OP9-DL1 stromal cells. Supported by Cancer Research UK (D.J.H.), the Addenbrooke's Charitable Trust (D.J.H.), the Medical Research Council (M.T., and a Collaborative Award in Science and Engineering to A.G.), the Biotechnology and Biological Sciences Research Council (BB/C506121/1 to M.T.), the US National Institutes of Health (R01CA120196 and R01CA129382 to A.A.F.), the European College of Obstetrics and Gynaecology tumor bank (U24 CA114737), the Leukemia & Lymphoma Society (A.A.F.), Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (K.D.K.) and the Belgian American Educational Foundation (K.D.K.).

Author information

Authors and Affiliations

Authors

Contributions

D.J.H. designed and did experiments, analyzed data and wrote the paper; M.L.J., A.G. and S.E.B. designed and did experiments; C.M.L., R.P., G.G., C.W.S. and H.R.M. developed analytical tools; S.A. designed experiments and analyzed data; K.D.M. and A.A.F. analyzed data; and M.T. designed experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Martin Turner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 599 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodson, D., Janas, M., Galloway, A. et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol 11, 717–724 (2010). https://doi.org/10.1038/ni.1901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing