Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transcription factor MafB antagonizes antiviral responses by blocking recruitment of coactivators to the transcription factor IRF3

Abstract

Viral infection induces type I interferons (IFN-α and IFN-β) that recruit unexposed cells in a self-amplifying response. We report that the transcription factor MafB thwarts auto-amplification by a metastable switch activity. MafB acted as a weak positive basal regulator of transcription at the IFNB1 promoter through activity at transcription factor AP-1–like sites. Interferon elicitors recruited the transcription factor IRF3 to the promoter, whereupon MafB acted as a transcriptional antagonist, impairing the interaction of coactivators with IRF3. Mathematical modeling supported the view that prepositioning of MafB on the promoter allows the system to respond rapidly to fluctuations in IRF3 activity. Higher expression of MafB in human pancreatic islet beta cells might increase cellular vulnerability to viral infections associated with the etiology of type 1 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MafB negatively regulates type I interferon induction.
Figure 2: Deletion of Mafb facilitates the induction of type I interferon.
Figure 3: MafB interferes with the activity of IRF3 and IRF7.
Figure 4: Mechanisms underlying the MafB-mediated suppression of type I interferon induction.
Figure 5: Regulation of MafB expression in response to pathogen triggers.
Figure 6: Roles of MafB in pancreatic beta cells.

Similar content being viewed by others

References

  1. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J.D. & Yamamoto, M. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294, 1–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Eychene, A., Rocques, N. & Pouponnot, C. A new MAFia in cancer. Nat. Rev. Cancer 8, 683–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, P.W. et al. Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias. Genomics 59, 275–281 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kelly, L.M., Englmeier, U., Lafon, I., Sieweke, M.H. & Graf, T. MafB is an inducer of monocytic differentiation. EMBO J. 19, 1987–1997 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Artner, I. et al. MafB: an activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 55, 297–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Nishimura, W. et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev. Biol. 293, 526–539 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA–induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Maniatis, T. et al. Structure and function of the interferon-β enhanceosome. Cold Spring Harb. Symp. Quant. Biol. 63, 609–620 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Escalante, C.R., Nistal-Villan, E., Shen, L., Garcia-Sastre, A. & Aggarwal, A.K. Structure of IRF-3 bound to the PRDIII-I regulatory element of the human interferon-β enhancer. Mol. Cell 26, 703–716 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Moriguchi, T. et al. MafB is essential for renal development and F4/80 expression in macrophages. Mol. Cell. Biol. 26, 5715–5727 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fitzgerald, K.A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hiscott, J. Triggering the innate antiviral response through IRF-3 activation. J. Biol. Chem. 282, 15325–15329 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, R., Heylbroeck, C., Pitha, P.M. & Hiscott, J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell. Biol. 18, 2986–2996 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin, R., Genin, P., Mamane, Y. & Hiscott, J. Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of α/β interferon genes by interferon regulatory factors 3 and 7. Mol. Cell. Biol. 20, 6342–6353 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wathelet, M.G. et al. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol. Cell 1, 507–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Yoneyama, M. et al. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17, 1087–1095 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar, K.P., McBride, K.M., Weaver, B.K., Dingwall, C. & Reich, N.C. Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1. Mol. Cell. Biol. 20, 4159–4168 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cordes, S.P. & Barsh, G.S. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79, 1025–1034 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Sieweke, M.H., Tekotte, H., Frampton, J. & Graf, T. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85, 49–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Mizukami, J. & Taniguchi, T. The antidiabetic agent thiazolidinedione stimulates the interaction between PPARγ and CBP. Biochem. Biophys. Res. Commun. 240, 61–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Tillmanns, S. et al. SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression. Mol. Cell. Biol. 27, 5554–5564 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1–polarizing program in dendritic cells. Nat. Immunol. 6, 769–776 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Pruett, S.B., Schwab, C., Zheng, Q. & Fan, R. Suppression of innate immunity by acute ethanol administration: a global perspective and a new mechanism beginning with inhibition of signaling through TLR3. J. Immunol. 173, 2715–2724 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Hammer, M. et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J. Exp. Med. 203, 15–20 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao, W. et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat. Immunol. 9, 1157–1164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ylipaasto, P. et al. Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia 48, 1510–1522 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Gaither, L.A. et al. Multiple cyclophilins involved in different cellular pathways mediate HCV replication. Virology 397, 43–55 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hyoty, H. & Taylor, K.W. The role of viruses in human diabetes. Diabetologia 45, 1353–1361 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Ylipaasto, P. et al. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47, 225–239 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Foulis, A.K. et al. A search for the presence of the enteroviral capsid protein VP1 in pancreases of patients with type 1 (insulin-dependent) diabetes and pancreases and hearts of infants who died of coxsackieviral myocarditis. Diabetologia 33, 290–298 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Maffei, A. et al. Identification of tissue-restricted transcripts in human islets. Endocrinology 145, 4513–4521 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Marselli, L. et al. Gene expression of purified beta-cell tissue obtained from human pancreas with laser capture microdissection. J. Clin. Endocrinol. Metab. 93, 1046–1053 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. See, D.M. & Tilles, J.G. Pathogenesis of virus-induced diabetes in mice. J. Infect. Dis. 171, 1131–1138 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Chehadeh, W. et al. Persistent infection of human pancreatic islets by coxsackievirus B is associated with α interferon synthesis in beta cells. J. Virol. 74, 10153–10164 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Serreze, D.V., Prochazka, M., Reifsnyder, P.C., Bridgett, M.M. & Leiter, E.H. Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J. Exp. Med. 180, 1553–1558 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Drescher, K.M., Kono, K., Bopegamage, S., Carson, S.D. & Tracy, S. Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329, 381–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Carter, J.D., Dula, S.B., Corbin, K.L., Wu, R. & Nunemaker, C.S. A Practical guide to rodent islet isolation and assessment. Biol. Proced. Online 11, 3–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Senger, K. et al. Gene repression by coactivator repulsion. Mol. Cell 6, 931–937 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Saitoh, T. et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat. Immunol. 7, 598–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Revollo, J.R. & Cidlowski, J.A. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann. NY Acad. Sci. 1179, 167–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Pouponnot, C. et al. Cell context reveals a dual role for Maf in oncogenesis. Oncogene 25, 1299–1310 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Whelan, S.P., Ball, L.A., Barr, J.N. & Wertz, G.T. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc. Natl. Acad. Sci. USA 92, 8388–8392 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iwamura, T. et al. Induction of IRF-3/-7 kinase and NF-κB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6, 375–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, H. & Perelson, A.S. Viral and latent reservoir persistence in HIV-1-infected patients on therapy. PLOS Comput. Biol. 2, e135 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Darga for assistance with automated assays and high-throughput screens; R. Niedra, N. Lu and W. Zhou for experimental help; the Seed and Xavier groups for sharing reagents and information; S. Takahashi and M. Hamada (University of Tsukuba) and D. Engel (University of Michigan) for Mafb-deficient MEFs and discussions; S. Whelan (Harvard Medical School) for VSV-Luc; T. Fujita (Kyoto University) for the CBP construct; J.-i. Miyazaki (Osaka University) and D.F. Steiner (University of Chicago) for MIN6 cells; C. Vanderburg for assistance with laser-capture microdissection; and M. Wathelet, R. Lin, S. Han and H. Lee for discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.K. designed and did experiments and wrote the manuscript; B.S. designed and supervised research and wrote the manuscript.

Corresponding author

Correspondence to Brian Seed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–3 and Supplementary Methods (PDF 3615 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Seed, B. The transcription factor MafB antagonizes antiviral responses by blocking recruitment of coactivators to the transcription factor IRF3. Nat Immunol 11, 743–750 (2010). https://doi.org/10.1038/ni.1897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing