Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells

This article has been updated

Abstract

CD4+ regulatory T cells (Treg cells) characterized by expression of the transcription factor Foxp3 have a pivotal role in maintaining immunological tolerance. Here we show that mice with T cell–specific deletion of both the Foxo1 and Foxo3 transcription factors (collectively called 'Foxo proteins' here) developed a fatal multifocal inflammatory disorder due in part to Treg cell defects. Foxo proteins functioned in a Treg cell–intrinsic manner to regulate thymic and transforming growth factor-β (TGF-β)-induced Foxp3 expression, in line with the ability of Foxo proteins to bind to Foxp3 locus and control Foxp3 promoter activity. Transcriptome analyses showed that Foxo proteins regulated the expression of additional Treg cell–associated genes and were essential for inhibiting the acquisition of effector T cell characteristics by Treg cells. Thus, Foxo proteins have crucial roles in specifying the Treg cell lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The development of a multifocal inflammatory disorder in mice with T cell–specific deletion of Foxo1 and Foxo3.
Figure 2: T cell activation and differentiation in the absence of Foxo1 and Foxo3.
Figure 3: Treg cell development and function in the absence of Foxo1 and Foxo3.
Figure 4: Gene expression and cytokine production in Foxo1−/−Foxo3−/− Treg cells.
Figure 5: Wild-type Treg cells correct the inflammatory disorder of Foxo1−/−Foxo3−/− mice.
Figure 6: Foxo1−/−Foxo3−/− Treg cells do not correct the scurfy-induced immune disorder.
Figure 7: A cell-intrinsic role for Foxo1 and Foxo3 in the control of Foxp3 expression.
Figure 8: Regulation of Foxp3 transcription by Foxo1 and Foxo3.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 18 May 2010

    In the version of this article initially published online, the final sentence of the “Chromatin immunoprecipitation” paragraph of the Online Methods section was incorrect. The correct sentence is “Primers for analysis of the binding of Foxo1 and Foxo3 to the Foxp3 locus are in Supplementary Table 5.” The error has been corrected for the PDF and HTML versions of this article.

  • 18 May 2010

    In the version of this supplementary file originally posted online, the Supplementary Information file was incorrect. The error has been corrected in this file as of 18 May 2010.

References

  1. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Tang, Q. & Bluestone, J.A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 9, 239–244 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vignali, D.A., Collison, L.W. & Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shevach, E.M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  6. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Ziegler, S.F. FOXP3: of mice and men. Annu. Rev. Immunol. 24, 209–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Feuerer, M., Hill, J.A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol. 10, 689–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Josefowicz, S.Z. & Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity 30, 616–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Hill, J.A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Long, M., Park, S.G., Strickland, I., Hayden, M.S. & Ghosh, S. Nuclear factor-κB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31, 921–931 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Ruan, Q. et al. Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity 31, 932–940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Isomura, I. et al. c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J. Exp. Med. 206, 3001–3014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burchill, M.A. et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28, 112–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, S.G., Wang, J.H., Gray, J.D., Soucier, H. & Horwitz, D.A. Natural and induced CD4+CD25+ cells educate CD4+CD25 cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10. J. Immunol. 172, 5213–5221 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hedrick, S.M. The cunning little vixen: Foxo and the cycle of life and death. Nat. Immunol. 10, 1057–1063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ouyang, W., Beckett, O., Flavell, R.A. & Li, M.O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kerdiles, Y.M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gubbels Bupp, M.R. et al. T cells require Foxo1 to populate the peripheral lymphoid organs. Eur. J. Immunol. 39, 2991–2999 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, L., Hron, J.D. & Peng, S.L. Regulation of NF-κB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 21, 203–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Dejean, A.S. et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat. Immunol. 10, 504–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paik, J.H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paik, J.H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540–553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liston, A. et al. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc. Natl. Acad. Sci. USA 105, 11903–11908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, H.P. & Leonard, W.J. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543–1551 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amin, R.H. & Schlissel, M.S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dengler, H.S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat. Immunol. 9, 1388–1398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Lio, C.W. & Hsieh, C.S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Curotto de Lafaille, M.A. & Lafaille, J.J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Seoane, J., Le, H.V., Shen, L., Anderson, S.A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Patton, D.T. et al. Cutting edge: the phosphoinositide 3-kinase p110δ is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol. 177, 6598–6602 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, G. et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat. Immunol. 10, 769–777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guertin, D.A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11, 859–871 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sabatini, D.M. mTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer 6, 729–734 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Delgoffe, G.M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sarris, M., Andersen, K.G., Randow, F., Mayr, L. & Betz, A.G. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 28, 402–413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Flavell (Yale University) for the Foxp3-RFP mouse strain; S. Ghosh (Columbia University) for luciferase reporter constructs; A. Brunet (Stanford University) for the Foxo3-specific antibody; and A. Rudensky, M. Huse and Y. Zheng for discussions. Supported by the Starr Cancer Consortium (13-A123 to M.O.L.), the National Institute of Arthritis, Musculoskeletal and Skin Diseases (K01 AR053595 to M.O.L.), the Arthritis Foundation (M.O.L.), the Robert A. and Renee E. Belfer Family Foundation (R.A.D.), the Damon-Runyon Cancer Research Foundation (J.-h.P.) and the Rita Allen Foundation (M.O.L.).

Author information

Authors and Affiliations

Authors

Contributions

W.O. and M.O.L. designed the research and analyzed the data; W.O., O.B. and Q.M. did experiments; R.A.D. and J.-h.P. provided the mouse strain with floxed Foxo3 and feedback on the manuscript; and W.O. and M.O.L. wrote the manuscript.

Corresponding author

Correspondence to Ming O Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Tables 1–5 (PDF 3660 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, W., Beckett, O., Ma, Q. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol 11, 618–627 (2010). https://doi.org/10.1038/ni.1884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing