Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of thymocyte positive selection and motility by GIT2

Abstract

Thymocytes are highly motile cells that migrate under the influence of chemokines in distinct thymic compartments as they mature. The motility of thymocytes is tightly regulated; however, the molecular mechanisms that control thymocyte motility are not well understood. Here we report that G protein–coupled receptor kinase-interactor 2 (GIT2) was required for efficient positive selection. Notably, Git2−/− double-positive thymocytes showed greater activation of the small GTPase Rac, actin polymerization and migration toward the chemokines CXCL12 (SDF-1) and CCL25 in vitro. By two-photon laser-scanning microscopy, we found that the scanning activity of Git2−/− thymocytes was compromised in the thymic cortex, which suggests GIT2 has a key role in regulating the chemokine-mediated motility of double-positive thymocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired generation of CD4SP thymocytes in DO11.10+ Git2−/− mice.
Figure 2: Fewer CD4SP thymocytes in TCR-transgenic Git2−/− mice because of impaired positive selection, not more apoptosis or negative selection.
Figure 3: The defect in the positive selection of TCR-transgenic Git2−/− thymocytes is intrinsic to hematopoietic cells.
Figure 4: Greater migratory activity of Git2−/− DP thymocytes in response to SDF-1 or CCL25.
Figure 5: Greater directional and random motility of Git2−/− thymocytes.
Figure 6: More Rac1 activation and actin polymerization in Git2−/− thymocytes in response to SDF-1.
Figure 7: More Git2−/− DP thymocytes overcome TCR-mediated stop signals in the presence of SDF-1.
Figure 8: Altered motility of Git2−/− thymocytes in the cortex.

Similar content being viewed by others

References

  1. Ladi, E., Yin, X., Chtanova, T. & Robey, E.A. Thymic microenvironments for T cell differentiation and selection. Nat. Immunol. 7, 338–343 (2006).

    Article  CAS  Google Scholar 

  2. Bousso, P., Bhakta, N.R., Lewis, R.S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    Article  CAS  Google Scholar 

  3. Witt, C.M., Raychaudhuri, S., Schaefer, B., Chakraborty, A.K. & Robey, E.A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol. 3, e160 (2005).

    Article  PubMed Central  Google Scholar 

  4. Bhakta, N.R., Oh, D.Y. & Lewis, R.S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat. Immunol. 6, 143–151 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  5. Ladi, E. et al. Thymocyte-dendritic cell interactions near sources of CCR7 ligands in the thymic cortex. J. Immunol. 181, 7014–7023 (2008).

    Article  CAS  Google Scholar 

  6. Suzuki, G. et al. Pertussis toxin-sensitive signal controls the trafficking of thymocytes across the corticomedullary junction in the thymus. J. Immunol. 162, 5981–5985 (1999).

    CAS  PubMed  Google Scholar 

  7. Zaitseva, M.B. et al. CXCR4 and CCR5 on human thymocytes: biological function and role in HIV-1 infection. J. Immunol. 161, 3103–3113 (1998).

    CAS  PubMed  Google Scholar 

  8. Wurbel, M.A. et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur. J. Immunol. 30, 262–271 (2000).

    Article  CAS  Google Scholar 

  9. Misslitz, A. et al. Thymic T cell development and progenitor localization depend on CCR7. J. Exp. Med. 200, 481–491 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  10. Uehara, S., Song, K., Farber, J.M. & Love, P.E. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development: CD3highCD69+ thymocytes and gammadeltaTCR+ thymocytes preferentially respond to CCL25. J. Immunol. 168, 134–142 (2002).

    Article  CAS  Google Scholar 

  11. Choi, Y.I. et al. PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla. Immunity 29, 888–898 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  12. Turner, C.E. Paxillin interactions. J. Cell Sci. 113, 4139–4140 (2000).

    CAS  PubMed  Google Scholar 

  13. Frank, S.R. & Hansen, S.H. The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin. Cell Dev. Biol. 19, 234–244 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  14. Randazzo, P.A., Inoue, H. & Bharti, S. Arf GAPs as regulators of the actin cytoskeleton. Biol. Cell 99, 583–600 (2007).

    Article  CAS  Google Scholar 

  15. Hoefen, R.J. & Berk, B.C. The multifunctional GIT family of proteins. J. Cell Sci. 119, 1469–1475 (2006).

    Article  CAS  Google Scholar 

  16. Sabe, H., Onodera, Y., Mazaki, Y. & Hashimoto, S. ArfGAP family proteins in cell adhesion, migration and tumor invasion. Curr. Opin. Cell Biol. 18, 558–564 (2006).

    Article  CAS  Google Scholar 

  17. Vitale, N. et al. GIT proteins, A novel family of phosphatidylinositol 3,4, 5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J. Biol. Chem. 275, 13901–13906 (2000).

    Article  CAS  Google Scholar 

  18. Premont, R.T., Claing, A., Vitale, N., Perry, S.J. & Lefkowitz, R.J. The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J. Biol. Chem. 275, 22373–22380 (2000).

    Article  CAS  Google Scholar 

  19. Radhakrishna, H., Al-Awar, O., Khachikian, Z. & Donaldson, J.G. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855–866 (1999).

    CAS  PubMed  Google Scholar 

  20. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  CAS  Google Scholar 

  21. Santy, L.C. & Casanova, J.E. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol. 154, 599–610 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  22. Premont, R.T. et al. beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 95, 14082–14087 (1998).

    Article  CAS  Google Scholar 

  23. Bagrodia, S. et al. A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J. Biol. Chem. 274, 22393–22400 (1999).

    Article  CAS  Google Scholar 

  24. Turner, C.E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  25. Frank, S.R., Adelstein, M.R. & Hansen, S.H. GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal adhesion turnover. EMBO J. 25, 1848–1859 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  26. Zhang, H., Webb, D.J., Asmussen, H., Niu, S. & Horwitz, A.F.A. GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J. Neurosci. 25, 3379–3388 (2005).

    Article  CAS  Google Scholar 

  27. Mazaki, Y. et al. Neutrophil direction sensing and superoxide production linked by the GTPase-activating protein GIT2. Nat. Immunol. 7, 724–731 (2006).

    Article  CAS  Google Scholar 

  28. Nishiya, N., Kiosses, W.B., Han, J. & Ginsberg, M.H. An α4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat. Cell Biol. 7, 343–352 (2005).

    Article  CAS  Google Scholar 

  29. Ku, G.M., Yablonski, D., Manser, E., Lim, L. & Weiss, A.A. PAK1-PIX-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J. 20, 457–465 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  30. Phee, H., Abraham, R.T. & Weiss, A. Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vav1. Nat. Immunol. 6, 608–617 (2005).

    Article  CAS  Google Scholar 

  31. Schmalzigaug, R., Phee, H., Davidson, C.E., Weiss, A. & Premont, R.T. Differential expression of the ARF GAP genes GIT1 and GIT2 in mouse tissues. J. Histochem. Cytochem. 55, 1039–1048 (2007).

    Article  CAS  Google Scholar 

  32. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  Google Scholar 

  33. Kisielow, P., Teh, H.S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730–733 (1988).

    Article  CAS  Google Scholar 

  34. Azzam, H.S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  35. Campbell, J.J., Pan, J. & Butcher, E.C. Cutting edge: developmental switches in chemokine responses during T cell maturation. J. Immunol. 163, 2353–2357 (1999).

    CAS  PubMed  Google Scholar 

  36. Hori, Y., Winans, A.M., Huang, C.C., Horrigan, E.M. & Irvine, D.J. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29, 3671–3682 (2008).

    Article  CAS  Google Scholar 

  37. Bromley, S.K., Peterson, D.A., Gunn, M.D. & Dustin, M.L. Cutting edge: hierarchy of chemokine receptor and TCR signals regulating T cell migration and proliferation. J. Immunol. 165, 15–19 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  38. Trampont, P.C. et al. CXCR4 acts as a costimulator during thymic β-selection. Nat. Immunol. 11, 162–170 (2010).

    Article  CAS  Google Scholar 

  39. Kato, S. Thymic microvascular system. Microsc. Res. Tech. 38, 287–299 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  40. Shiow, L.R. et al. The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat. Immunol. 9, 1307–1315 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  41. Jacobelli, J., Bennett, F.C., Pandurangi, P., Tooley, A.J. & Krummel, M.F. Myosin-IIA and ICAM-1 regulate the interchange between two distinct modes of T cell migration. J. Immunol. 182, 2041–2050 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Transgenic/Targeted Mutagenesis Core Facility of the University of California San Francisco Comprehensive Cancer Center for creating Git2−/− mice; the Biological Imaging Development Center of the University of California San Francisco for Imaris software support; and E. Manser (Institute of Molecular and Cell Biology, Singapore) for monoclonal and polyclonal antibodies that recognize the α- and β-isoforms of PIX. Supported by the Leukemia and Lymphoma Society (H.P.) and the National Institutes of Health (R01AI064227 to E.R.).

Author information

Authors and Affiliations

Authors

Contributions

H.P. designed the study, did experiments, analyzed data and wrote the manuscript; M.M. did experiments; I.D. did the two-photon experiments and analyzed data; Y.W. and D.J.I. supplied alginate beads; E.R. supervised the two-photon experiments and discussed data; and A.W. designed the study, supervised the research and revised the manuscript.

Corresponding author

Correspondence to Arthur Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Table 1 and Methods (PDF 4120 kb)

Supplementary Video 1

Directional migration of wild-type and Git2−/− thymocytes to SDF-1. (AVI 3025 kb)

Supplementary Video 2

Migration of wild-type and Git2−/− thymocytes in intact thymic lobes using two-photon microscopy. (AVI 947 kb)

Supplementary Video 3

Accumulation and movement of Git2−/− thymocyte on small blood vessels. (AVI 1062 kb)

Supplementary Video 4

Migratory behavior of wild-type thymocytes that move away from small blood vessels. (AVI 284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phee, H., Dzhagalov, I., Mollenauer, M. et al. Regulation of thymocyte positive selection and motility by GIT2. Nat Immunol 11, 503–511 (2010). https://doi.org/10.1038/ni.1868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing