Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptotagmin-mediated vesicle fusion regulates cell migration

Abstract

Chemokines and other chemoattractants direct leukocyte migration and are essential for the development and delivery of immune and inflammatory responses. To probe the molecular mechanisms that underlie chemoattractant-guided migration, we did an RNA-mediated interference screen that identified several members of the synaptotagmin family of calcium-sensing vesicle-fusion proteins as mediators of cell migration: SYT7 and SYTL5 were positive regulators of chemotaxis, whereas SYT2 was a negative regulator of chemotaxis. SYT7-deficient leukocytes showed less migration in vitro and in a gout model in vivo. Chemoattractant-induced calcium-dependent lysosomal fusion was impaired in SYT7-deficient neutrophils. In a chemokine gradient, SYT7-deficient lymphocytes accumulated lysosomes in their uropods and had impaired uropod release. Our data identify a molecular pathway required for chemotaxis that links chemoattractant-induced calcium flux to exocytosis and uropod release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screen of chemotaxis by shRNA identifies synaptotagmins SYT2, SYTL5 and SYT7.
Figure 2: Knockdown of RAB27A and RAB3A inhibits T cell chemotaxis.
Figure 3: Migration of wild-type and SYT7-deficient neutrophils ex vivo.
Figure 4: Migration of wild-type and SYT7-deficient neutrophils in vivo in a model of gout.
Figure 5: CXCR4 cell surface expression and chemokine-induced F-actin polymerization and calcium release.
Figure 6: Effect of calcium on chemotaxis, F-actin polymerization, and chemokine-induced expression of LAMP-1.
Figure 7: Localization of LysoTracker Red–stained vesicles during cell migration.

Similar content being viewed by others

References

  1. Viola, A. & Luster, A.D. Chemokines and their receptors: drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 48, 171–197 (2008).

    CAS  Google Scholar 

  2. Murphy, P.M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12, 593–633 (1994).

    Article  CAS  Google Scholar 

  3. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  4. Van Haastert, P.J. & Devreotes, P.N. Chemotaxis: signalling the way forward. Nat. Rev. Mol. Cell Biol. 5, 626–634 (2004).

    Article  CAS  Google Scholar 

  5. Kehrl, J.H., Hwang, I.Y. & Park, C. Chemoattract receptor signaling and its role in lymphocyte motility and trafficking. Curr. Top. Microbiol. Immunol. 334, 107–127 (2009).

    CAS  PubMed  Google Scholar 

  6. Wu, D., LaRosa, G.J. & Simon, M.I. G protein-coupled signal transduction pathways for interleukin-8. Science 261, 101–103 (1993).

    Article  CAS  Google Scholar 

  7. Malchow, D., Bohme, R. & Rahmsdorf, H.J. Regulation of phosphorylation of myosin heavy chain during the chemotactic response of Dictyostelium cells. Eur. J. Biochem. 117, 213–218 (1981).

    Article  CAS  Google Scholar 

  8. Liu, G. & Newell, P.C. Regulation of myosin regulatory light chain phosphorylation via cyclic GMP during chemotaxis of Dictyostelium. J. Cell Sci. 107, 1737–1743 (1994).

    CAS  PubMed  Google Scholar 

  9. Pettit, E.J. & Fay, F.S. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol. Rev. 78, 949–967 (1998).

    Article  CAS  Google Scholar 

  10. Brundage, R.A., Fogarty, K.E., Tuft, R.A. & Fay, F.S. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254, 703–706 (1991).

    Article  CAS  Google Scholar 

  11. Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995).

    Article  CAS  Google Scholar 

  12. Stephens, L. et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell 77, 83–93 (1994).

    Article  CAS  Google Scholar 

  13. Hannigan, M.O., Huang, C.K. & Wu, D.Q. Roles of PI3K in neutrophil function. Curr. Top. Microbiol. Immunol. 282, 165–175 (2004).

    CAS  PubMed  Google Scholar 

  14. Thelen, M. & Stein, J.V. How chemokines invite leukocytes to dance. Nat. Immunol. 9, 953–959 (2008).

    Article  CAS  Google Scholar 

  15. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. & Littman, D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  Google Scholar 

  16. Ma, Q. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95, 9448–9453 (1998).

    Article  CAS  Google Scholar 

  17. Root, D.D., Hacohen, N., Hahn, W.C., Lander, E.S. & Sabatini, D.M. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat. Methods 3, 715–719 (2006).

    Article  CAS  Google Scholar 

  18. Colvin, R.A., Campanella, G.S., Sun, J. & Luster, A.D. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J. Biol. Chem. 279, 30219–30227 (2004).

    Article  CAS  Google Scholar 

  19. Koh, A. et al. Role of osteopontin in neutrophil function. Immunology 122, 466–475 (2007).

    Article  CAS  Google Scholar 

  20. Ticchioni, M. et al. Signaling through ZAP-70 is required for CXCL12-mediated T-cell transendothelial migration. Blood 99, 3111–3118 (2002).

    Article  CAS  Google Scholar 

  21. Baram, D. et al. Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells. J. Exp. Med. 189, 1649–1658 (1999).

    Article  CAS  Google Scholar 

  22. Martinez, I. et al. Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts. J. Cell Biol. 148, 1141–1149 (2000).

    Article  CAS  Google Scholar 

  23. Reddy, A., Caler, E.V. & Andrews, N.W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001).

    Article  CAS  Google Scholar 

  24. Chakrabarti, S. et al. Impaired membrane resealing and autoimmune myositis in synaptotagmin VII-deficient mice. J. Cell Biol. 162, 543–549 (2003).

    Article  CAS  Google Scholar 

  25. Stinchcombe, J.C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834 (2001).

    Article  CAS  Google Scholar 

  26. Kuroda, T.S., Fukuda, M., Ariga, H. & Mikoshiba, K. Synaptotagmin-like protein 5: a novel Rab27A effector with C-terminal tandem C2 domains. Biochem. Biophys. Res. Commun. 293, 899–906 (2002).

    Article  CAS  Google Scholar 

  27. Coppola, T. et al. Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J. Biol. Chem. 276, 32756–32762 (2001).

    Article  CAS  Google Scholar 

  28. Geppert, M., Goda, Y., Stevens, C.F. & Sudhof, T.C. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810–814 (1997).

    Article  CAS  Google Scholar 

  29. Zigmond, S.H. Orientation chamber in chemotaxis. Methods Enzymol. 162, 65–72 (1988).

    Article  CAS  Google Scholar 

  30. Chen, C.J. et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest. 116, 2262–2271 (2006).

    Article  CAS  Google Scholar 

  31. Martin, W.J., Walton, M. & Harper, J. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis Rheum. 60, 281–289 (2009).

    Article  Google Scholar 

  32. Terkeltaub, R., Baird, S., Sears, P., Santiago, R. & Boisvert, W. The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of neutrophilic inflammation in the air pouch model of acute urate crystal-induced gouty synovitis. Arthritis Rheum. 41, 900–909 (1998).

    Article  CAS  Google Scholar 

  33. Manes, S. et al. Mastering time and space: immune cell polarization and chemotaxis. Semin. Immunol. 17, 77–86 (2005).

    Article  CAS  Google Scholar 

  34. Izumi, T. Physiological roles of Rab27 effectors in regulated exocytosis. Endocr. J. 54, 649–657 (2007).

    Article  CAS  Google Scholar 

  35. Huber, T.B. et al. Expression of functional CCR and CXCR chemokine receptors in podocytes. J. Immunol. 168, 6244–6252 (2002).

    Article  CAS  Google Scholar 

  36. Burt, D. et al. The monocyte chemoattractant protein-1/cognate CC chemokine receptor 2 system affects cell motility in cultured human podocytes. Am. J. Pathol. 171, 1789–1799 (2007).

    Article  CAS  Google Scholar 

  37. Fukuda, M. Versatile role of Rab27 in membrane trafficking: focus on the Rab27 effector families. J. Biochem. 137, 9–16 (2005).

    Article  Google Scholar 

  38. Marcus, P.I. Dynamics of surface modification in myxovirus-infected cells. Cold Spring Harb. Symp. Quant. Biol. 27, 351–365 (1962).

    Article  CAS  Google Scholar 

  39. Abercrombie, M., Heaysman, J.E. & Pegrum, S.M. The locomotion of fibroblasts in culture. II. RRuffling. Exp. Cell Res. 60, 437–444 (1970).

    Article  CAS  Google Scholar 

  40. Abercrombie, M., Heaysman, J.E. & Pegrum, S.M. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp. Cell Res. 59, 393–398 (1970).

    Article  CAS  Google Scholar 

  41. Abercrombie, M., Heaysman, J.E. & Pegrum, S.M. The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella. Exp. Cell Res. 62, 389–398 (1970).

    Article  CAS  Google Scholar 

  42. Bretscher, M.S. & Thomson, J.N. Distribution of ferritin receptors and coated pits on giant HeLa cells. EMBO J. 2, 599–603 (1983).

    Article  CAS  Google Scholar 

  43. Lee, J., Gustafsson, M., Magnusson, K.E. & Jacobson, K. The direction of membrane lipid flow in locomoting polymorphonuclear leukocytes. Science 247, 1229–1233 (1990).

    Article  CAS  Google Scholar 

  44. Hopkins, C.R., Gibson, A., Shipman, M., Strickland, D.K. & Trowbridge, I.S. In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the pericentriolar area, and then routed to the plasma membrane of the leading lamella. J. Cell Biol. 125, 1265–1274 (1994).

    Article  CAS  Google Scholar 

  45. Masztalerz, A. et al. Synaptotagmin 3 deficiency in T cells impairs recycling of the chemokine receptor CXCR4 and thereby inhibits CXCL12 chemokine-induced migration. J. Cell Sci. 120, 219–228 (2007).

    Article  CAS  Google Scholar 

  46. Lawson, M.A. & Maxfield, F.R. Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377, 75–79 (1995).

    Article  CAS  Google Scholar 

  47. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  Google Scholar 

  48. Bach, T.L. et al. Phospholipase cβ is critical for T cell chemotaxis. J. Immunol. 179, 2223–2227 (2007).

    Article  CAS  Google Scholar 

  49. Wei, C. et al. Calcium flickers steer cell migration. Nature 457, 901–905 (2009).

    Article  CAS  Google Scholar 

  50. Proux-Gillardeaux, V., Raposo, G., Irinopoulou, T. & Galli, T. Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biol. Cell 99, 261–271 (2007).

    Article  CAS  Google Scholar 

  51. Yoshinaga-Ohara, N., Takahashi, A., Uchiyama, T. & Sasada, M. Spatiotemporal regulation of moesin phosphorylation and rear release by Rho and serine/threonine phosphatase during neutrophil migration. Exp. Cell Res. 278, 112–122 (2002).

    Article  CAS  Google Scholar 

  52. Lokuta, M.A. et al. Type Iγ PIP kinase is a novel uropod component that regulates rear retraction during neutrophil chemotaxis. Mol. Biol. Cell 18, 5069–5080 (2007).

    Article  CAS  Google Scholar 

  53. Morin, N.A. et al. Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. J. Exp. Med. 205, 195–205 (2008).

    Article  CAS  Google Scholar 

  54. Introne, W., Boissy, R.E. & Gahl, W.A. Clinical, molecular, and cell biological aspects of Chediak-Higashi syndrome. Mol. Genet. Metab. 68, 283–303 (1999).

    Article  CAS  Google Scholar 

  55. Mundel, P. et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp. Cell Res. 236, 248–258 (1997).

    Article  CAS  Google Scholar 

  56. Kim, N.D., Chou, R.C., Seung, E., Tager, A.M. & Luster, A.D. A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis. J. Exp. Med. 203, 829–835 (2006).

    Article  CAS  Google Scholar 

  57. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  Google Scholar 

  58. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  59. Wang, X. & Seed, B.A. PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res. 31, e154 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Immune Circuits and RNAi Platform groups of the Broad Institute and W. Xu for discussions and the Imaging Core of the Ragon Institute of MGH, MIT and Harvard. Supported by the US National Institutes of Health (R01 DK074449 to A.D.L. and R01 GM064625 to N.W.A.), the Defense Advanced Research Projects Agency (W81XWH-04-C-0139 to N.H.), Fundação Luso-Americana para o Desenvolvimento (L.F.M.) and Fundação para a Ciência e a Tecnologia (L.F.M.).

Author information

Authors and Affiliations

Authors

Contributions

R.A.C. designed the experiments, did the screening, collected and analyzed data and wrote the manuscript; T.K.M. did air-pouch experiments, macrophage stimulation and GTPase assays and helped edit the manuscript; T.J.D. did confocal microscopy and analyzed lymphocytes; L.F.M. and C.M. helped with initial screens; R.P.F. assisted with air-pouch experiments; S.S. did confocal microscopy of podocytes; G.S.V.C. helped with experiments; T.A. and L.A.M. collected data; N.W.A. provided mouse strains; D.W. assisted with video migration assays of neutrophils; N.H. helped design experiments, analyzed data and helped edit the manuscript; A.D.L. helped design experiments, analyzed data and edited the manuscript; and all authors discussed results and commented on the manuscript.

Corresponding author

Correspondence to Andrew D Luster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–2 and Supplementary Methods (PDF 836 kb)

Supplementary Video 1

Bone marrow derived neutrophils from wild-type C57BL/6 mice migrating in response to fMLP. (MOV 274 kb)

Supplementary Video 2

Bone marrow derived neutrophils from Syt7−/− mice migrating in response to fMLP. (MOV 148 kb)

Supplementary Video 3

CD4+ lymphocytes obtained from wild-type C57BL/6 mice, loaded with lysotracker red, migrating in response to CXCL10. (MOV 3861 kb)

Supplementary Video 4

CD4+ lymphocytes obtained from wild-type C57BL/6 mice, loaded with lysotracker red, migrating in response to CXCL10. (MOV 1135 kb)

Supplementary Video 5

CD4+ lymphocytes obtained from Syt7−/− mice, loaded with lysotracker red, migrating in response to CXCL10. (MOV 6688 kb)

Supplementary Video 6

CD4+ lymphocytes obtained from Syt7−/− mice, loaded with lysotracker red, migrating in response to CXCL10. (MOV 626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colvin, R., Means, T., Diefenbach, T. et al. Synaptotagmin-mediated vesicle fusion regulates cell migration. Nat Immunol 11, 495–502 (2010). https://doi.org/10.1038/ni.1878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing