Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells

Abstract

Pattern-recognition receptors (PRRs) elicit antiviral immune responses to human immunodeficiency virus type 1 (HIV-1). Here we show that HIV-1 required signaling by the PRRs Toll-like receptor 8 (TLR8) and DC-SIGN for replication in dendritic cells (DCs). HIV-1 activated the transcription factor NF-κB through TLR8 to initiate the transcription of integrated provirus by RNA polymerase II (RNAPII). However, DC-SIGN signaling was required for the generation of full-length viral transcripts. Binding of the HIV-1 envelope glycoprotein gp120 to DC-SIGN induced kinase Raf-1–dependent phosphorylation of the NF-κB subunit p65 at Ser276, which recruited the transcription-elongation factor pTEF-b to nascent transcripts. Transcription elongation and generation of full-length viral transcripts was dependent on pTEF-b-mediated phosphorylation of RNAPII at Ser2. Inhibition of either pathway abrogated replication and prevented HIV-1 transmission. Thus, HIV-1 subverts crucial components of the immune system for replication that might be targeted to prevent infection and dissemination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of DC-SIGN by gp120 is essential for early HIV-1 transcription.
Figure 2: Raf-1 signaling by HIV-1-DC-SIGN interactions is essential for HIV-1 replication.
Figure 3: HIV-1 triggering of TLR8 innate signaling via MyD88 activates NF-κB.
Figure 4: HIV-1 exploits TLR8 signaling for transcription initiation, whereas DC-SIGN signaling is essential for transcription elongation by RNAPII.
Figure 5: HIV-1-induced phosphorylation of p65 at Ser276 is essential for pTEF-b recruitment and transcription elongation.
Figure 6: Raf-1 activation by HIV-1 is required for productive DC infection and transmission to CD4+ T cells.
Figure 7: Coinfection enhances HIV-1 replication via Raf-1 signaling pathways.

Similar content being viewed by others

References

  1. Steinman, R.M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  Google Scholar 

  2. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  3. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  Google Scholar 

  4. Kanneganti, T.D., Lamkanfi, M. & Núñez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    Article  CAS  Google Scholar 

  5. O'Neill, L.A.J. When signaling pathways collide: positive and negative regulation of Toll-like receptor signal transduction. Immunity 29, 12–20 (2008).

    Article  CAS  Google Scholar 

  6. Geijtenbeek, T.B.H. & Gringhuis, S.I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479 (2009).

    Article  CAS  Google Scholar 

  7. Meier, A. et al. MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J. Virol. 81, 8180–8191 (2007).

    Article  CAS  Google Scholar 

  8. Beignon, A.S. et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J. Clin. Invest. 115, 3265–3275 (2005).

    Article  CAS  Google Scholar 

  9. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  Google Scholar 

  10. Meier, A. et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 15, 955–959 (2009).

    Article  CAS  Google Scholar 

  11. Hardy, A.W., Graham, D.R., Shearer, G.M. & Herbeuval, J.P. HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-α. Proc. Natl. Acad. Sci. USA 104, 17453–17458 (2007).

    Article  CAS  Google Scholar 

  12. de Witte, L. et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med. 13, 367–371 (2007).

    Article  CAS  Google Scholar 

  13. Geijtenbeek, T.B.H. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  Google Scholar 

  14. Gringhuis, S.I. et al. C-type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26, 605–616 (2007).

    Article  CAS  Google Scholar 

  15. Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M. & Geijtenbeek, T.B.H. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol. 10, 1081–1088 (2009).

    Article  CAS  Google Scholar 

  16. Hodges, A. et al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat. Immunol. 8, 569–577 (2007).

    Article  CAS  Google Scholar 

  17. Royce, R.A., Sena, A., Cates, W. & Cohen, M.S. Sexual transmission of HIV. N. Engl. J. Med. 336, 1072–1078 (1997).

    Article  CAS  Google Scholar 

  18. UNAIDS. Global AIDS epidemic just beginning. AIDS Policy Law 20, 1 (2005).

  19. de Witte, L., Nabatov, A. & Geijtenbeek, T.B. Distinct roles for DC-SIGN+-dendritic cells and Langerhans cells in HIV-1 transmission. Trends Mol. Med. 14, 12–19 (2008).

    Article  CAS  Google Scholar 

  20. Wu, L. & KewalRamani, V.N. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat. Rev. Immunol. 6, 859–868 (2006).

    Article  CAS  Google Scholar 

  21. Turville, S.G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179 (2004).

    Article  CAS  Google Scholar 

  22. Perreau, M., Pantaleo, G. & Kremer, E.J. Activation of a dendritic cell-T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells. J. Exp. Med. 205, 2717–2725 (2008).

    Article  CAS  Google Scholar 

  23. Goff, S.P. Host factors exploited by retroviruses. Nat. Rev. Microbiol. 5, 253–263 (2007).

    Article  CAS  Google Scholar 

  24. Greene, W.C. & Peterlin, B.M. Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nat. Med. 8, 673–680 (2002).

    Article  CAS  Google Scholar 

  25. Perkins, N.D. et al. A cooperative interaction between NF-κB and Sp1 is required for HIV-1 enhancer activation. EMBO J. 12, 3551–3558 (1993).

    Article  CAS  Google Scholar 

  26. Nabel, G. & Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713 (1987).

    Article  CAS  Google Scholar 

  27. Peterlin, B.M. & Trono, D. Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nat. Rev. Immunol. 3, 97–107 (2003).

    Article  CAS  Google Scholar 

  28. Barboric, M. & Peterlin, B.M. A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol. 3, e76 (2005).

    Article  Google Scholar 

  29. Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).

    Article  CAS  Google Scholar 

  30. Adams, M. et al. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc. Natl. Acad. Sci. USA 91, 3862–3866 (1994).

    Article  CAS  Google Scholar 

  31. Kao, S.Y., Calman, A.F., Luciw, P.A. & Peterlin, B.M. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330, 489–493 (1987).

    Article  CAS  Google Scholar 

  32. Burleigh, L. et al. Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J. Virol. 80, 2949–2957 (2006).

    Article  CAS  Google Scholar 

  33. Kwon, D.S., Gregorio, G., Bitton, N., Hendrickson, W.A. & Littman, D.R. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16, 135–144 (2002).

    Article  CAS  Google Scholar 

  34. Brussel, A. & Sonigo, P. Evidence for gene expression by unintegrated human immunodeficiency virus type 1 DNA species. J. Virol. 78, 11263–11271 (2004).

    Article  CAS  Google Scholar 

  35. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  36. Yedavalli, V.S.R.K., Neuveut, C., Chi, Y.h., Kleiman, L. & Jeang, K.T. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119, 381–392 (2004).

    Article  CAS  Google Scholar 

  37. Gringhuis, S.I. et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nat. Immunol. 10, 203–213 (2009).

    Article  CAS  Google Scholar 

  38. Nowak, D.E. et al. RelA Ser276 phosphorylation is required for activation of a subset of NF-κB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol. Cell. Biol. 28, 3623–3638 (2008).

    Article  CAS  Google Scholar 

  39. Pion, M. et al. APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection. J. Exp. Med. 203, 2887–2893 (2006).

    Article  CAS  Google Scholar 

  40. Publicover, J., Ramsburg, E., Robek, M. & Rose, J.K. Rapid pathogenesis induced by a vesicular stomatitis virus matrix protein mutant: viral pathogenesis is linked to induction of tumor necrosis factor α. J. Virol. 80, 7028–7036 (2006).

    Article  CAS  Google Scholar 

  41. Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W. & Haegeman, G. Transcriptional activation of the NF-κB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 22, 1313–1324 (2003).

    Article  CAS  Google Scholar 

  42. de Jong, M.A. et al. TNF-α and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. J. Clin. Invest. 118, 3440–3452 (2008).

    Article  CAS  Google Scholar 

  43. Toossi, Z. Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease. J. Infect. Dis. 188, 1146–1155 (2003).

    Article  Google Scholar 

  44. Ranjbar, S. et al. HIV-1 replication is differentially regulated by distinct clinical strains of Mycobacterium tuberculosis. PLoS ONE 4, e6116 (2009).

    Article  Google Scholar 

  45. Lawn, S.D. AIDS in Africa: the impact of coinfections on the pathogenesis of HIV-1 infection. J. Infect. 48, 1–12 (2004).

    Article  CAS  Google Scholar 

  46. Hester, R.A. & Kennedy, S.B. Candida infection as a risk factor for HIV transmission. J. Womens Health 12, 487–494 (2003).

    Article  Google Scholar 

  47. Collins, K.R., Quinones-Mateu, M.E., Toossi, Z. & Arts, E.J. Impact of tuberculosis on HIV-1 replication, diversity, and disease progression. AIDS Rev. 4, 165–176 (2002).

    PubMed  Google Scholar 

  48. Kim, Y.K. et al. Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J. 25, 3596–3604 (2006).

    Article  CAS  Google Scholar 

  49. Sgarbanti, M. et al. Modulation of human immunodeficiency virus 1 replication by interferon regulatory factors. J. Exp. Med. 195, 1359–1370 (2002).

    Article  CAS  Google Scholar 

  50. Geijtenbeek, T.B.H. et al. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat. Immunol. 1, 353–357 (2000).

    Article  CAS  Google Scholar 

  51. Geijtenbeek, T.B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).

    Article  CAS  Google Scholar 

  52. Lackey, K. et al. The discovery of potent cRaf1 kinase inhibitors. Bioorg. Med. Chem. Lett. 10, 223–226 (2000).

    Article  CAS  Google Scholar 

  53. Obrig, T.G., Culp, W.J., McKeehan, W.L. & Hardesty, B. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J. Biol. Chem. 246, 174–181 (1971).

    CAS  PubMed  Google Scholar 

  54. Gallay, P., Hope, T., Chin, D. & Trono, D. HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl. Acad. Sci. USA 94, 9825–9830 (1997).

    Article  CAS  Google Scholar 

  55. Chatterji, U. et al. Naturally occurring capsid substitutions render HIV-1 cyclophilin A independent in human cells and TRIM-cyclophilin-resistant in Owl monkey cells. J. Biol. Chem. 280, 40293–40300 (2005).

    Article  CAS  Google Scholar 

  56. Duh, E.J., Maury, W.J., Folks, T.M., Fauci, A.S. & Rabson, A.B. Tumor necrosis factor α activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-κB sites in the long terminal repeat. Proc. Natl. Acad. Sci. USA 86, 5974–5978 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Oudhoff (Academic Centre for Dentistry Amsterdam) for C. albicans; P. Gallay (The Scripps Research Institute) and C. Aiken (Vanderbilt University School of Medicine) for HIV-1 proviral plasmids; K. Kristiansen (University of Southern Denmark) for the GST-p65 expression plasmid; J. Belisle (Colorado State University; National Institute of Allergy and Infectious Diseases contract HHSN266200400091C) for M. tuberculosis; and J. Kappes and X. Wu (Tranzyme) for TZM-bl cells (obtained through the National Institutes of Health AIDS Research and Reference Reagent Program). Supported by the Netherlands Organisation for Scientific Research (NWO 917-46-367 to M.L. and NWO 912-04-025 to J.d.D.), the AIDS Foundation (2007036 to M.v.d.V.), Dutch Burns Foundation (08.109 to L.M.v.d.B) and the Dutch Asthma Foundation (3.2.03.39 to S.I.G.).

Author information

Authors and Affiliations

Authors

Contributions

S.I.G. designed, executed and interpreted most experiments and prepared the manuscript; M.v.d.V. executed HIV-1 stimulation, infection and transmission experiments, isolated myeloid DCs and helped with the nuclear extract preparations; L.M.v.d.B. isolated dermal DCs; J.d.D. helped with flow cytometry; M.L. helped with GST-p65 purification and setting up the GST enzyme-linked immunosorbent assay (ELISA); and T.B.H.G. supervised all aspects of this study, including study design, execution and interpretation, and manuscript preparation.

Corresponding authors

Correspondence to Sonja I Gringhuis or Teunis B H Geijtenbeek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 547 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gringhuis, S., van der Vlist, M., van den Berg, L. et al. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 11, 419–426 (2010). https://doi.org/10.1038/ni.1858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing