Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase–substrate complex

Abstract

Hematopoietic stem cell (HSC) differentiation is regulated by cell-intrinsic and cell-extrinsic cues. In addition to transcriptional regulation, post-translational regulation may also control HSC differentiation. To test this hypothesis, we visualized the ubiquitin-regulated protein stability of a single transcription factor, c-Myc. The stability of c-Myc protein was indicative of HSC quiescence, and c-Myc protein abundance was controlled by the ubiquitin ligase Fbw7. Fine changes in the stability of c-Myc protein regulated the HSC gene-expression signature. Using whole-genome genomic approaches, we identified specific regulators of HSC function directly controlled by c-Myc binding; however, adult HSCs and embryonic stem cells sensed and interpreted c-Myc-regulated gene expression in distinct ways. Our studies show that a ubiquitin ligase–substrate pair can orchestrate the molecular program of HSC differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abundance of c-Myc protein in early hematopoiesis.
Figure 2: Correlation between the amount of c-Myc protein and loss of HSC self-renewal.
Figure 3: Fbw7 controls the stability of c-Myc protein in HSCs.
Figure 4: The abundance of c-Myc protein directly controls the molecular program of stem cell differentiation, cell-cycle entry and self-renewal.
Figure 5: Genes overexpressed in c-Myc-EGFPhi cells are directly bound by the c-Myc transcription factor.
Figure 6: The role of the c-Myc–Fbw7 interaction in fetal liver stem cells and progenitor cells.
Figure 7: Expression patterns of Fbw7 and c-Myc in mouse ESCs.
Figure 8: Fbw7 is dispensable for the self-renewal of mouse ESCs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Adams, G.B. & Scadden, D.T. The hematopoietic stem cell in its place. Nat. Immunol. 7, 333–337 (2006).

    Article  CAS  Google Scholar 

  2. Kiel, M.J. & Morrison, S.J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  Google Scholar 

  3. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  Google Scholar 

  4. Yoshida, T. et al. The role of the chromatin remodeler Mi-2β in hematopoietic stem cell self-renewal and multilineage differentiation. Genes Dev. 22, 1174–1189 (2008).

    Article  CAS  Google Scholar 

  5. Moore, K.A. & Lemischka, I.R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    Article  CAS  Google Scholar 

  6. Gangaraju, V.K. & Lin, H. MicroRNAs: key regulators of stem cells. Nat. Rev. Mol. Cell Biol. 10, 116–125 (2009).

    Article  CAS  Google Scholar 

  7. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  8. Harper, J.W. & Schulman, B.A. Structural complexity in ubiquitin recognition. Cell 124, 1133–1136 (2006).

    Article  CAS  Google Scholar 

  9. Yamasaki, L. & Pagano, M. Cell cycle, proteolysis and cancer. Curr. Opin. Cell Biol. 16, 623–628 (2004).

    Article  CAS  Google Scholar 

  10. Buszczak, M., Paterno, S. & Spradling, A.C. Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny. Science 323, 248–251 (2009).

    Article  CAS  Google Scholar 

  11. Matsuoka, S. et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 22, 986–991 (2008).

    Article  CAS  Google Scholar 

  12. Thompson, B.J. et al. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J. Exp. Med. 205, 1395–1408 (2008).

    Article  CAS  Google Scholar 

  13. Whetton, A.D. et al. The time is right: proteome biology of stem cells. Cell Stem Cell 2, 215–217 (2008).

    Article  CAS  Google Scholar 

  14. Dalla-Favera, R., Martinotti, S., Gallo, R.C., Erikson, J. & Croce, C.M. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 219, 963–967 (1983).

    Article  CAS  Google Scholar 

  15. O'Neil, J. & Look, A.T. Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene 26, 6838–6849 (2007).

    Article  CAS  Google Scholar 

  16. Laurenti, E. et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 3, 611–624 (2008).

    Article  CAS  Google Scholar 

  17. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  Google Scholar 

  18. Zhao, X. et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat. Cell Biol. 10, 643–653 (2008).

    Article  CAS  Google Scholar 

  19. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  Google Scholar 

  20. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl. Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  Google Scholar 

  21. Huang, C.Y., Bredemeyer, A.L., Walker, L.M., Bassing, C.H. & Sleckman, B.P. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse. Eur. J. Immunol. 38, 342–349 (2008).

    Article  CAS  Google Scholar 

  22. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  Google Scholar 

  23. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  Google Scholar 

  24. Rossi, D.J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    Article  CAS  Google Scholar 

  25. Eilers, M. & Eisenman, R.N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  Google Scholar 

  26. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  Google Scholar 

  27. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  28. Georgantas, R.W. III et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res. 64, 4434–4441 (2004).

    Article  CAS  Google Scholar 

  29. Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  Google Scholar 

  30. Goldrath, A.W., Luckey, C.J., Park, R., Benoist, C. & Mathis, D. The molecular program induced in T cells undergoing homeostatic proliferation. Proc. Natl. Acad. Sci. USA 101, 16885–16890 (2004).

    Article  CAS  Google Scholar 

  31. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  Google Scholar 

  32. Karlsson, S. Is TGF-β a stemness regulator? Blood 113, 1208 (2009).

    Article  CAS  Google Scholar 

  33. Margolin, A.A. et al. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proc. Natl. Acad. Sci. USA 106, 244–249 (2009).

    Article  CAS  Google Scholar 

  34. Morrison, S.J., Hemmati, H.D., Wandycz, A.M. & Weissman, I.L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  Google Scholar 

  35. Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006).

    Article  CAS  Google Scholar 

  36. Orford, K.W. & Scadden, D.T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 9, 115–128 (2008).

    Article  CAS  Google Scholar 

  37. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009).

    Article  CAS  Google Scholar 

  38. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  39. Schaniel, C. et al. Delivery of short hairpin RNAs–triggers of gene silencing–into mouse embryonic stem cells. Nat. Methods 3, 397–400 (2006).

    Article  CAS  Google Scholar 

  40. Welcker, M. & Clurman, B.E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8, 83–93 (2008).

    Article  CAS  Google Scholar 

  41. Bechard, M. & Dalton, S. Subcellular localization of glycogen synthase kinase 3beta controls embryonic stem cell self-renewal. Mol. Cell. Biol. 29, 2092–2104 (2009).

    Article  CAS  Google Scholar 

  42. de Alboran, I.M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).

    Article  CAS  Google Scholar 

  43. Demuth, T. et al. MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Mol. Cancer Ther. 6, 1212–1222 (2007).

    Article  CAS  Google Scholar 

  44. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  Google Scholar 

  45. Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Aifantis Lab and specifically B. King for advice as well as time and effort spent on this manuscript; P. Lopez and the NYU Flow Cytometry Facility for cell sorting; the NYU Cancer Institute Genomics Facility for help with microarray processing; M. Gostissa (Harvard University) and F. Alt (Harvard University) for Mycflox mice; and I. Lemischka and his laboratory (Mount Sinai) for the Nanog-GFP line and technical advice. Supported by the National Institutes of Health (RO1CA133379, RO1CA105129, R21CA141399, R56AI070310 and P30CA016087 to I.A.; RO1AI41428 and RO1AI072039 to B.P.S.; and R01CA120196 to A.F.), the American Cancer Society (RSG0806801 to I.A.), the Edward Mallinckrodt Jr. Foundation, the Irma T. Hirschl Trust, the Alex's Lemonade Stand Foundation (I.A.), the Alexander von Humboldt Foundation (B.A.-O.), the NYU Hematology/Oncology Program (S.M.B.), an NYU Molecular Oncology and Immunology Training Grant (5T32CA009161 to K.C.), the Leukemia & Lymphoma Society (I.A. and A.F.) and the Howard Hughes Medical Institute (I.A.).

Author information

Authors and Affiliations

Authors

Contributions

L.R. did most of the experiments and participated in preparing the manuscript; G.D.G., T.P., A.F. and B.A.-O. designed and did the ChIP-plus-microarray and ChIP experiments; K.C., E.L. and B.T. did the ESC experiments; B.P.S., B.T., A.L.B. and B.A.H. generated and did initial studies with the c-Myc–eGFP mice; J.Z. analyzed microarray data; and I.A. designed the study and prepared the manuscript.

Corresponding author

Correspondence to Iannis Aifantis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–3 (PDF 2270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reavie, L., Gatta, G., Crusio, K. et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase–substrate complex. Nat Immunol 11, 207–215 (2010). https://doi.org/10.1038/ni.1839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing