Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation

Abstract

Bcl-6 and Blimp-1 have recently been identified as key transcriptional regulators of effector and memory differentiation in CD4+ T cells and CD8+ T cells. Bcl-6 and Blimp-1 were previously known to be critical regulators of effector and memory differentiation of B lymphocytes. The new findings unexpectedly point to the Bcl-6 and Blimp-1 regulatory axis as a ubiquitous mechanism for controlling effector and memory lymphocyte differentiation and function. Bcl-6 and Blimp-1 are antagonistic transcription factors and can function as a self-reinforcing genetic switch for cell-fate decisions. However, their influences in different lymphocytes are complex. Here we review and examine the commonalities and differences in the functions of these transcription factors in CD4+ follicular helper TFH lymphocytes, effector CD8+ T lymphocytes and B lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bcl-6 and Blimp-1 are reciprocally antagonistic transcription factors.
Figure 2: Roles of Bcl-6 and Blimp-1 in B cell differentiation.
Figure 3: Roles of Bcl-6 and Blimp-1 in T cell differentiation.
Figure 4: Functional effects of different amounts of Bcl-6 and Blimp-1 expression.

Similar content being viewed by others

References

  1. Schoenberger, S.P. & Crotty, S. in Fundamental Immunology, 6th edn (ed. Paul, W.E.) 862–898 (Lippincott Williams & Wilkins, Philadelphia, 2008).

    Google Scholar 

  2. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nurieva, R. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    CAS  PubMed  Google Scholar 

  5. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rutishauser, R.L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    CAS  PubMed  Google Scholar 

  8. Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    CAS  PubMed  Google Scholar 

  9. Baron, B.W. et al. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc. Natl. Acad. Sci. USA 90, 5262–5266 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kerckaert, J.P. et al. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat. Genet. 5, 66–70 (1993).

    CAS  PubMed  Google Scholar 

  11. Klein, U. & Dalla-Favera, R. Germinal centres: role in B-cell physiology and malignancy. Nat. Rev. Immunol. 8, 22–33 (2008).

    CAS  PubMed  Google Scholar 

  12. Jardin, F., Ruminy, P., Bastard, C. & Tilly, H. The BCL6 proto-oncogene: a leading role during germinal center development and lymphomagenesis. Pathol. Biol. 55, 73–83 (2007).

    CAS  PubMed  Google Scholar 

  13. Tangye, S. & Tarlinton, D. Memory B cells: Effectors of long-lived immune responses. Eur. J. Immunol. 39, 9–11 (2009).

    Google Scholar 

  14. Fairfax, K.A., Kallies, A., Nutt, S.L. & Tarlinton, D.M. Plasma cell development: from B-cell subsets to long-term survival niches. Semin. Immunol. 20, 49–58 (2008).

    CAS  PubMed  Google Scholar 

  15. Allen, C.D.C., Okada, T. & Cyster, J.G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Noia, J.M. & Neuberger, M.S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    CAS  PubMed  Google Scholar 

  17. Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ye, B.H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat. Genet. 16, 161–170 (1997).

    CAS  PubMed  Google Scholar 

  19. Toyama, H. et al. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunity 17, 329–339 (2002).

    CAS  PubMed  Google Scholar 

  20. Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol. 173, 1158–1165 (2004).

    CAS  PubMed  Google Scholar 

  21. Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455 (2005).

    CAS  PubMed  Google Scholar 

  22. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    CAS  PubMed  Google Scholar 

  23. Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nat. Rev. Immunol. 5, 230–242 (2005).

    CAS  PubMed  Google Scholar 

  24. Turner, C.A. Jr, Mack, D.H. & Davis, M.M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    CAS  PubMed  Google Scholar 

  25. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26, 133–169 (2008).

    CAS  PubMed  Google Scholar 

  26. Kallies, A. et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med. 200, 967–977 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaffer, A.L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    CAS  PubMed  Google Scholar 

  28. Shaffer, A.L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    CAS  PubMed  Google Scholar 

  29. Reimold, A.M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    CAS  PubMed  Google Scholar 

  30. Lin, Y., Wong, K. & Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596–599 (1997).

    CAS  PubMed  Google Scholar 

  31. Mendez, L.M. et al. CtBP is an essential corepressor for BCL6 autoregulation. Mol. Cell. Biol. 28, 2175–2186 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119, 75–86 (2004).

    CAS  PubMed  Google Scholar 

  33. Cimmino, L. et al. Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression. J. Immunol. 181, 2338–2347 (2008).

    CAS  PubMed  Google Scholar 

  34. Kallies, A. et al. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity 26, 555–566 (2007).

    CAS  PubMed  Google Scholar 

  35. Zhu, J. & Paul, W.E. CD4 T cells: fates, functions, and faults. Blood 112, 1557–1569 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kopf, M., Le Gros, G., Coyle, A.J., Kosco-Vilbois, M. & Brombacher, F. Immune responses of IL-4, IL-5, IL-6 deficient mice. Immunol. Rev. 148, 45–69 (1995).

    CAS  PubMed  Google Scholar 

  37. Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsiagbe, V.K. & Thorbecke, G.J. in The Biology of Germinal Centers. (eds. Thorbecke, G.J. & Tsiagbe, V.K.) 1–103 (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  39. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    CAS  PubMed  Google Scholar 

  40. Kim, C.H. et al. Unique gene expression program of human germinal center T helper cells. Blood 104, 1952–1960 (2004).

    CAS  PubMed  Google Scholar 

  41. Rasheed, A.-U., Rahn, H.-P., Sallusto, F., Lipp, M. & Müller, G. Follicular B helper T cell activity is confined to CXCR5hiICOShi CD4 T cells and is independent of CD57 expression. Eur. J. Immunol. 36, 1892–1903 (2006).

    CAS  PubMed  Google Scholar 

  42. King, C., Tangye, S.G. & Mackay, C.R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).

    CAS  PubMed  Google Scholar 

  43. Fazilleau, N., McHeyzer-Williams, L.J., Rosen, H. & McHeyzer-Williams, M.G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma, C.S. et al. Early commitment of naive human CD4+ T cells to the T follicular helper (TFH) cell lineage is induced by IL-12. Immunol. Cell Biol. 87, 590–600 (2009).

    CAS  PubMed  Google Scholar 

  45. McHeyzer-Williams, L.J., Pelletier, N., Mark, L., Fazilleau, N. & McHeyzer-Williams, M.G. Follicular helper T cells as cognate regulators of B cell immunity. Curr. Opin. Immunol. 21, 266–273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Martins, G.A. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat. Immunol. 7, 457–465 (2006).

    CAS  PubMed  Google Scholar 

  47. Dent, A.L., Hu-Li, J., Paul, W.E. & Staudt, L.M. T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6. Proc. Natl. Acad. Sci. USA 95, 13823–13828 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Smith, K.M. et al. Th1 and Th2 CD4+ T cells provide help for B cell clonal expansion and antibody synthesis in a similar manner in vivo. J. Immunol. 165, 3136–3144 (2000).

    CAS  PubMed  Google Scholar 

  49. Smith, K.M., Brewer, J.M., Rush, C.M., Riley, J. & Garside, P. In vivo generated Th1 cells can migrate to B cell follicles to support B cell responses. J. Immunol. 173, 1640–1646 (2004).

    CAS  PubMed  Google Scholar 

  50. Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zaretsky, A.G. et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 206, 991–999 (2009).

    CAS  PubMed Central  Google Scholar 

  52. King, I.L. & Mohrs, M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206, 1001–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hsu, H.C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9, 166–175 (2008).

    CAS  PubMed  Google Scholar 

  54. Haynes, N.M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    CAS  PubMed  Google Scholar 

  55. Gong, D. & Malek, T.R. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J. Immunol. 178, 242–252 (2007).

    CAS  PubMed  Google Scholar 

  56. Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat. Immunol. 7, 466–474 (2006).

    CAS  PubMed  Google Scholar 

  57. Intlekofer, A.M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med. 204, 2015–2021 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaech, S.M. & Wherry, E.J. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27, 393–405 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yoshida, K. et al. Bcl6 controls granzyme B expression in effector CD8+ T cells. Eur. J. Immunol. 36, 3146–3156 (2006).

    CAS  PubMed  Google Scholar 

  60. Fukuda, T. et al. The murine BCL6 gene is induced in activated lymphocytes as an immediate early gene. Oncogene 11, 1657–1663 (1995).

    CAS  PubMed  Google Scholar 

  61. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    CAS  PubMed  Google Scholar 

  62. Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat. Immunol. 3, 558–563 (2002).

    CAS  PubMed  Google Scholar 

  63. Ichii, H., Sakamoto, A., Kuroda, Y. & Tokuhisa, T. Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J. Immunol. 173, 883–891 (2004).

    CAS  PubMed  Google Scholar 

  64. Ichii, H. et al. Bcl6 is essential for the generation of long-term memory CD4+ T cells. Int. Immunol. 19, 427–433 (2007).

    CAS  PubMed  Google Scholar 

  65. Scheeren, F.A. et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat. Immunol. 6, 303–313 (2005).

    CAS  PubMed  Google Scholar 

  66. Kuo, T.C. et al. Repression of BCL-6 is required for the formation of human memory B cells in vitro. J. Exp. Med. 204, 819–830 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fearon, D.T., Manders, P. & Wagner, S.D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293, 248–250 (2001).

    CAS  PubMed  Google Scholar 

  68. Blink, E.J. et al. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–554 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shvarts, A. et al. A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19ARF-p53 signaling. Genes Dev. 16, 681–686 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tomayko, M.M. et al. Systematic comparison of gene expression between murine memory and naive B cells demonstrates that memory B cells have unique signaling capabilities. J. Immunol. 181, 27–38 (2008).

    CAS  PubMed  Google Scholar 

  71. Mueller, S.N. & Ahmed, R. High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. USA 106, 8623–8628 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Shin, H. & Wherry, E.J. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19, 408–415 (2007).

    CAS  PubMed  Google Scholar 

  73. Ha, S.J., West, E.E., Araki, K., Smith, K.A. & Ahmed, R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol. Rev. 223, 317–333 (2008).

    CAS  PubMed  Google Scholar 

  74. Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  PubMed  Google Scholar 

  75. Ejrnaes, M. et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med. 203, 2461–2472 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Brooks, D.G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 12, 1301–1309 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Brooks, D.G. et al. IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during persistent viral infection. Proc. Natl. Acad. Sci. USA 105, 20428–20433 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Huynh, K.D., Fischle, W., Verdin, E. & Bardwell, V.J. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 14, 1810–1823 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ghetu, A.F. et al. Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol. Cell 29, 384–391 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dhordain, P. et al. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc. Natl. Acad. Sci. USA 94, 10762–10767 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dhordain, P. et al. The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res. 26, 4645–4651 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Okabe, S. et al. BAZF, a novel Bcl6 homolog, functions as a transcriptional repressor. Mol. Cell. Biol. 18, 4235–4244 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dhordain, P. et al. Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF. Oncogene 19, 6240–6250 (2000).

    CAS  PubMed  Google Scholar 

  84. Phan, R.T., Saito, M., Basso, K., Niu, H. & Dalla-Favera, R. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat. Immunol. 6, 1054–1060 (2005).

    CAS  PubMed  Google Scholar 

  85. Jaye, D.L. et al. The BCL6-associated transcriptional co-repressor, MTA3, is selectively expressed by germinal centre B cells and lymphomas of putative germinal centre derivation. J. Pathol. 213, 106–115 (2007).

    CAS  PubMed  Google Scholar 

  86. Chevallier, N. et al. ETO protein of t(8;21) AML is a corepressor for Bcl-6 B-cell lymphoma oncoprotein. Blood 103, 1454–1463 (2004).

    CAS  PubMed  Google Scholar 

  87. Parekh, S. et al. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 110, 2067–2074 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Vasanwala, F.H., Kusam, S., Toney, L.M. & Dent, A.L. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J. Immunol. 169, 1922–1929 (2002).

    CAS  PubMed  Google Scholar 

  89. Ci, W. et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 113, 5536–5548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Allman, D. et al. BCL-6 expression during B-cell activation. Blood 87, 5257–5268 (1996).

    CAS  PubMed  Google Scholar 

  91. Niu, H., Ye, B.H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bereshchenko, O.R., Gu, W. & Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606–613 (2002).

    CAS  PubMed  Google Scholar 

  93. Hirata, Y. et al. BCL6 degradation caused by the interaction with the C-terminus of pro-HB-EGF induces cyclin D2 expression in gastric cancers. Br. J. Cancer 100, 1320–1329 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin, K.I., Lin, Y. & Calame, K. Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro. Mol. Cell. Biol. 20, 8684–8695 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin, K.I., Angelin-Duclos, C., Kuo, T.C. & Calame, K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol. Cell. Biol. 22, 4771–4780 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Piskurich, J.F. et al. BLIMP-I mediates extinction of major histocompatibility class II transactivator expression in plasma cells. Nat. Immunol. 1, 526–532 (2000).

    CAS  PubMed  Google Scholar 

  97. Ghosh, N., Gyory, I., Wright, G., Wood, J. & Wright, K.L. Positive regulatory domain I binding factor 1 silences class II transactivator expression in multiple myeloma cells. J. Biol. Chem. 276, 15264–15268 (2001).

    CAS  PubMed  Google Scholar 

  98. Quong, M.W., Romanow, W.J. & Murre, C. E protein function in lymphocyte development. Annu. Rev. Immunol. 20, 301–322 (2002).

    CAS  PubMed  Google Scholar 

  99. Kamimura, D. & Bevan, M.J. Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. J. Immunol. 181, 5433–5441 (2008).

    CAS  PubMed  Google Scholar 

  100. Martins, G.A., Cimmino, L., Liao, J., Magnusdottir, E. & Calame, K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J. Exp. Med. 205, 1959–1965 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by a Pew Scholar Award and the National Institutes of Health (072543 and 063107 to S.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane Crotty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crotty, S., Johnston, R. & Schoenberger, S. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat Immunol 11, 114–120 (2010). https://doi.org/10.1038/ni.1837

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing