Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines

Abstract

Balanced production of type I interferons and proinflammatory cytokines after engagement of Toll-like receptors (TLRs), which signal through adaptors containing a Toll–interleukin 1 receptor (TIR) domain, such as MyD88 and TRIF, has been proposed to control the pathogenesis of autoimmune disease and tumor responses to inflammation. Here we show that TRAF3, a ubiquitin ligase that interacts with both MyD88 and TRIF, regulated the production of interferon and proinflammatory cytokines in different ways. Degradative ubiquitination of TRAF3 during MyD88-dependent TLR signaling was essential for the activation of mitogen-activated protein kinases (MAPKs) and production of inflammatory cytokines. In contrast, TRIF-dependent signaling triggered noncanonical TRAF3 self-ubiquitination that activated the interferon response. Inhibition of degradative ubiquitination of TRAF3 prevented the expression of all proinflammatory cytokines without affecting the interferon response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of cIAP1/2 in TLR-mediated MAPK signaling.
Figure 2: TLR4 engagement induces an MyD88-associated signaling complex that undergoes cIAP1/2- and TRAF6-dependent cytosolic translocation after TRAF3 degradation.
Figure 3: TRAF6 is required for LPS-induced activation of TAK1 and ubiquitination of cIAP2 and TRAF3.
Figure 4: LPS-induced K63-linked TRAF3 self-ubiquitination depends on TLR endocytosis.
Figure 5: K63- and K48-linked ubiquitination have different and distinct roles in TRAF3 function.
Figure 6: Differences in the regulation of TLR4-induced inflammatory cytokines and interferon-related genes.

Similar content being viewed by others

References

  1. Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  Google Scholar 

  2. Luo, J.L., Maeda, S., Hsu, L.C., Yagita, H. & Karin, M. Inhibition of NF-κB in cancer cells converts inflammation- induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell 6, 297–305 (2004).

    Article  CAS  Google Scholar 

  3. Lin, W.W. & Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117, 1175–1183 (2007).

    Article  CAS  Google Scholar 

  4. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  5. Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

    Article  CAS  Google Scholar 

  6. Pasare, C. & Medzhitov, R. Toll-like receptors: linking innate and adaptive immunity. Adv. Exp. Med. Biol. 560, 11–18 (2005).

    Article  CAS  Google Scholar 

  7. Vogel, S.N., Fitzgerald, K.A. & Fenton, M.J. TLRs: differential adapter utilization by toll-like receptors mediates TLR-specific patterns of gene expression. Mol. Interv. 3, 466–477 (2003).

    Article  CAS  Google Scholar 

  8. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  CAS  Google Scholar 

  9. Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253–258 (1998).

    Article  CAS  Google Scholar 

  10. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  Google Scholar 

  11. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  Google Scholar 

  12. Bin, L.H., Xu, L.G. & Shu, H.B. TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J. Biol. Chem. 278, 24526–24532 (2003).

    Article  CAS  Google Scholar 

  13. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article  CAS  Google Scholar 

  14. Fitzgerald, K.A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001).

    Article  CAS  Google Scholar 

  15. Horng, T., Barton, G.M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835–841 (2001).

    Article  CAS  Google Scholar 

  16. Kawai, T. & Akira, S. TLR signaling. Semin. Immunol. 19, 24–32 (2007).

    Article  CAS  Google Scholar 

  17. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  Google Scholar 

  18. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    Article  CAS  Google Scholar 

  19. Matsuzawa, A. et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 321, 663–668 (2008).

    Article  CAS  Google Scholar 

  20. Inoue, J., Gohda, J. & Akiyama, T. Characteristics and biological functions of TRAF6. Adv. Exp. Med. Biol. 597, 72–79 (2007).

    Article  Google Scholar 

  21. Petersen, S.L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    Article  CAS  Google Scholar 

  22. Li, L. et al. A small molecule Smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305, 1471–1474 (2004).

    Article  CAS  Google Scholar 

  23. Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nat. Immunol. 9, 1364–1370 (2008).

    Article  CAS  Google Scholar 

  24. Werneburg, B.G., Zoog, S.J., Dang, T.T., Kehry, M.R. & Crute, J.J. Molecular characterization of CD40 signaling intermediates. J. Biol. Chem. 276, 43334–43342 (2001).

    Article  CAS  Google Scholar 

  25. Kagan, J.C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol. 9, 361–368 (2008).

    Article  CAS  Google Scholar 

  26. Núñez Miguel, R. et al. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS One 2, e788 (2007).

    Article  Google Scholar 

  27. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    Article  CAS  Google Scholar 

  28. Lamothe, B. et al. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. J. Biol. Chem. 282, 4102–4112 (2007).

    Article  CAS  Google Scholar 

  29. Vaux, D.L. & Silke, J. IAPs, RINGs and ubiquitylation. Nat. Rev. Mol. Cell Biol. 6, 287–297 (2005).

    Article  CAS  Google Scholar 

  30. Li, X., Yang, Y. & Ashwell, J.D. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416, 345–347 (2002).

    Article  Google Scholar 

  31. Uematsu, S. & Akira, S. Toll-like receptors and type I interferons. J. Biol. Chem. 282, 15319–15323 (2007).

    Article  CAS  Google Scholar 

  32. O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  Google Scholar 

  33. Pineda, G., Ea, C.K. & Chen, Z.J. Ubiquitination and TRAF signaling. Adv. Exp. Med. Biol. 597, 80–92 (2007).

    Article  Google Scholar 

  34. Yamamoto, M. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat. Immunol. 7, 962–970 (2006).

    Article  CAS  Google Scholar 

  35. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6, 1087–1095 (2005).

    Article  CAS  Google Scholar 

  36. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  Google Scholar 

  37. Keats, J.J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  Google Scholar 

  38. Park, J.M. et al. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis–CREB and NF-κB as key regulators. Immunity 23, 319–329 (2005).

    Article  CAS  Google Scholar 

  39. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  Google Scholar 

  40. Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

    Article  CAS  Google Scholar 

  41. Beaumelle, B.D., Gibson, A. & Hopkins, C.R. Isolation and preliminary characterization of the major membrane boundaries of the endocytic pathway in lymphocytes. J. Cell Biol. 111, 1811–1823 (1990).

    Article  CAS  Google Scholar 

  42. Johnson, G.L. & Bourne, H.R. Influence of cholera toxin on the regulation of adenylate cyclase by GTP. Biochem. Biophys. Res. Commun. 78, 792–798 (1977).

    Article  CAS  Google Scholar 

  43. Iwamura, T. et al. Induction of IRF-3/-7 kinase and NF-κB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6, 375–388 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Ichijo (University of Tokyo) for providing A.M. with space and support for some of this work described above; S. Akira (Osaka University) for Myd88−/− mice; B. Beutler (Scripps Research Institute) for TrifLps2/Lps2 mice; R. Fonseca (Mayo Clinic) for multiple myeloma cells; X. Wang (University of Texas Southwestern Medical Center) for SM; H. Wang (St. Jude Children's Research Hospital) for generating monoclonal antibody HWA4C4, specific for K63-linked ubiquitin; I. Verma (Salk Institute) for pLV-CMV-delta 8.2; and Millipore for the antibody to K48-linked polyubiquitin. Supported by the National Institutes of Health (AI043477 to M.K. and AI52199 to D.A.A.V.), the American Cancer Society (M.K.), the American Lung Association of California (P.-H.T.), the Global Center of Excellence program (A.M.), the Toyobo Biotechnology Foundation (T.M.), the National Cancer Institute (CA21765 to D.A.A.V.) and the American Lebanese Syrian Associated Charities (D.A.A.V.).

Author information

Authors and Affiliations

Authors

Contributions

P.-H.T. and M.K. planned and designed all experiments and wrote the manuscript; P.-H.T. and A.M. did most experiments; W.Z. and T.M. helped with cell cultures, TRAF3 mutants and immunoprecipitation experiments; and D.A.A.V. provided the HWA4C4 K63-specific antibody to ubiquitin.

Corresponding author

Correspondence to Michael Karin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1 and Supplementary Methods (PDF 1490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, PH., Matsuzawa, A., Zhang, W. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 11, 70–75 (2010). https://doi.org/10.1038/ni.1819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing