Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-γ

Abstract

The differentiation of activated CD4+ T cells into the T helper type 1 (TH1) or TH2 fate is regulated by cytokines and the transcription factors T-bet and GATA-3. Whereas interleukin 12 (IL-12) produced by antigen-presenting cells initiates the TH1 fate, signals that initiate the TH2 fate are not completely characterized. Here we show that early GATA-3 expression, required for TH2 differentiation, was induced by T cell factor 1 (TCF-1) and its cofactor β-catenin, mainly from the proximal Gata3 promoter upstream of exon 1b. This activity was induced after T cell antigen receptor (TCR) stimulation and was independent of IL-4 receptor signaling through the transcription factor STAT6. Furthermore, TCF-1 blocked TH1 fate by negatively regulating interferon-γ (IFN-γ) expression independently of β-catenin. Thus, TCF-1 initiates TH2 differentiation of activated CD4+ T cells by promoting GATA-3 expression and suppressing IFN-γ expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initial GATA-3 expression in TCR-activated CD4+ T cells is from Gata3-1b transcripts.
Figure 2: TCF-1 and β-catenin act together to regulate the production of GATA-3 from Gata3-1b transcripts.
Figure 3: TCF-1 and β-catenin bind TCF-1 sites upstream of Gata3 exon 1b.
Figure 4: TCF-1 and β-catenin act together to promote IL-4 production and TH2 differentiation.
Figure 5: TCF-1- and β-catenin-induced IL-4 production by CD4+ T cells is Notch independent.
Figure 6: TCF-1 negatively regulates IFN-γ production independently of β-catenin.
Figure 7: TCF-1 regulates TH2 responses in vivo.

Similar content being viewed by others

References

  1. Glimcher, L.H. & Murphy, K.M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  Google Scholar 

  2. Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  3. Corthay, A. A three-cell model for activation of naive T helper cells. Scand. J. Immunol. 64, 93–96 (2006).

    Article  CAS  Google Scholar 

  4. Brown, D.R. et al. β2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med. 184, 1295–1304 (1996).

    Article  CAS  Google Scholar 

  5. Ansel, K.M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    Article  CAS  Google Scholar 

  6. Smiley, S.T., Kaplan, M.H. & Grusby, M.J. Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275, 977–979 (1997).

    Article  CAS  Google Scholar 

  7. von der Weid, T., Beebe, A.M., Roopenian, D.C. & Coffman, R.L. Early production of IL-4 and induction of Th2 responses in the lymph node originate from an MHC class I-independent CD4+NK1.1 T cell population. J. Immunol. 157, 4421–4427 (1996).

    CAS  PubMed  Google Scholar 

  8. Schmitz, J. et al. Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells. J. Exp. Med. 179, 1349–1353 (1994).

    Article  CAS  Google Scholar 

  9. Ho, I.C., Hodge, M.R., Rooney, J.W. & Glimcher, L.H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973–983 (1996).

    Article  CAS  Google Scholar 

  10. Zhang, D.H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    Article  CAS  Google Scholar 

  11. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  Google Scholar 

  12. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat. Immunol. 5, 1157–1165 (2004).

    Article  CAS  Google Scholar 

  13. Asnagli, H., Afkarian, M. & Murphy, K.M. Cutting edge: Identification of an alternative GATA-3 promoter directing tissue-specific gene expression in mouse and human. J. Immunol. 168, 4268–4271 (2002).

    Article  CAS  Google Scholar 

  14. Scheinman, E.J. & Avni, O. Transcriptional regulation of GATA3 in T helper cells by the integrated activities of transcription factors downstream of the interleukin-4 receptor and T cell receptor. J. Biol. Chem. 284, 3037–3048 (2009).

    Article  CAS  Google Scholar 

  15. Amsen, D. et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27, 89–99 (2007).

    Article  CAS  Google Scholar 

  16. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  Google Scholar 

  17. Fang, T.C. et al. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27, 100–110 (2007).

    Article  CAS  Google Scholar 

  18. Minter, L.M. et al. Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat. Immunol. 6, 680–688 (2005).

    Article  CAS  Google Scholar 

  19. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  Google Scholar 

  20. Ong, C.T., Sedy, J.R., Murphy, K.M. & Kopan, R. Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition. PLoS ONE 3, e2823 (2008).

    Article  Google Scholar 

  21. Brantjes, H., Barker, N., van Es, J. & Clevers, H. TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol. Chem. 383, 255–261 (2002).

    Article  CAS  Google Scholar 

  22. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  23. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  CAS  Google Scholar 

  24. Staal, F.J., Burgering, B.M., van de Wetering, M. & Clevers, H.C. Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells. Int. Immunol. 11, 317–323 (1999).

    Article  CAS  Google Scholar 

  25. Staal, F.J., Luis, T.C. & Tiemessen, M.M. WNT signalling in the immune system: WNT is spreading its wings. Nat. Rev. Immunol. 8, 581–593 (2008).

    Article  CAS  Google Scholar 

  26. Staal, F.J. & Sen, J.M. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur. J. Immunol. 38, 1788–1794 (2008).

    Article  CAS  Google Scholar 

  27. Verbeek, S. et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374, 70–74 (1995).

    Article  CAS  Google Scholar 

  28. Willinger, T. et al. Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J. Immunol. 176, 1439–1446 (2006).

    Article  CAS  Google Scholar 

  29. Xu, Y., Banerjee, D., Huelsken, J., Birchmeier, W. & Sen, J.M. Deletion of β-catenin impairs T cell development. Nat. Immunol. 4, 1177–1182 (2003).

    Article  CAS  Google Scholar 

  30. Staal, F.J. & Clevers, H.C. WNT signalling and haematopoiesis: a WNT-WNT situation. Nat. Rev. Immunol. 5, 21–30 (2005).

    Article  CAS  Google Scholar 

  31. Yu, Q. & Sen, J.M. β-catenin regulates positive selection of thymocytes but not lineage commitment. J. Immunol. 178, 5028–5034 (2007).

    Article  CAS  Google Scholar 

  32. Wu, B., Crampton, S.P. & Hughes, C.C. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26, 227–239 (2007).

    Article  CAS  Google Scholar 

  33. Moriyama, A. et al. GFP transgenic mice reveal active canonical Wnt signal in neonatal brain and in adult liver and spleen. Genesis 45, 90–100 (2007).

    Article  CAS  Google Scholar 

  34. Kaplan, M.H., Schindler, U., Smiley, S.T. & Grusby, M.J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  Google Scholar 

  35. Satoh, K. et al. Anteriorization of neural fate by inhibitor of β-catenin and T cell factor (ICAT), a negative regulator of Wnt signaling. Proc. Natl. Acad. Sci. USA 101, 8017–8021 (2004).

    Article  CAS  Google Scholar 

  36. Hossain, M.Z., Yu, Q., Xu, M. & Sen, J.M. ICAT expression disrupts β-catenin-TCF interactions and impairs survival of thymocytes and activated mature T cells. Int. Immunol. 20, 925–935 (2008).

    Article  CAS  Google Scholar 

  37. Mulroy, T., Xu, Y. & Sen, J.M. β-Catenin expression enhances generation of mature thymocytes. Int. Immunol. 15, 1485–1494 (2003).

    Article  CAS  Google Scholar 

  38. Sekiya, T. et al. Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-β signaling, as a target of the β-catenin pathway in colorectal tumor cells. J. Biol. Chem. 279, 6840–6846 (2004).

    Article  CAS  Google Scholar 

  39. Atcha, F.A. et al. A unique DNA binding domain converts T-cell factors into strong Wnt effectors. Mol. Cell. Biol. 27, 8352–8363 (2007).

    Article  CAS  Google Scholar 

  40. Xu, M., Sharma, A., Wiest, D.L. & Sen, J.M. Pre-TCR-induced β-catenin facilitates traversal through beta-selection. J. Immunol. 182, 751–758 (2009).

    Article  CAS  Google Scholar 

  41. Ding, Y., Shen, S., Lino, A.C., Curotto de Lafaille, M.A. & Lafaille, J.J. Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat. Med. 14, 162–169 (2008).

    Article  CAS  Google Scholar 

  42. Kalinski, P., Hilkens, C.M., Wierenga, E.A. & Kapsenberg, M.L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–567 (1999).

    Article  CAS  Google Scholar 

  43. Kalinski, P., Vieira, P.L., Schuitemaker, J.H., de Jong, E.C. & Kapsenberg, M.L. Prostaglandin E2 is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood 97, 3466–3469 (2001).

    Article  CAS  Google Scholar 

  44. Woolard, M.D. et al. Francisella tularensis-infected macrophages release prostaglandin E2 that blocks T cell proliferation and promotes a Th2-like response. J. Immunol. 178, 2065–2074 (2007).

    Article  CAS  Google Scholar 

  45. Shao, J., Jung, C., Liu, C. & Sheng, H. Prostaglandin E2 stimulates the β-catenin/T cell factor-dependent transcription in colon cancer. J. Biol. Chem. 280, 26565–26572 (2005).

    Article  CAS  Google Scholar 

  46. Castellone, M.D., Teramoto, H., Williams, B.O., Druey, K.M. & Gutkind, J.S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis. Science 310, 1504–1510 (2005).

    Article  CAS  Google Scholar 

  47. Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA 100, 3299–3304 (2003).

    Article  CAS  Google Scholar 

  48. Zheng, T. et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106, 1081–1093 (2000).

    Article  CAS  Google Scholar 

  49. Zhu, Z. et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 103, 779–788 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Wersto and team for cell sorting; the animal facility of the National Institute on Aging for maintaining animals; S. Luo and team for genotyping; H. Clevers (Hubrecht Institute) for TCF-1-deficient mice; W. Pear (University of Pennsylvania) for the dnMAML retroviral construct; and N. Taylor, A. Singer, R. Bosselut, R. Sen and A. Bhandoola for critically reading the manuscript. Supported by the Intramural Research Program of the National Institute on Aging of the National Institutes of Health and the Oak Ridge Institute for Science and Education's Research Associates Program of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Q.Y. and J.M.S. designed and orchestrated the study and wrote the manuscript; Q.Y., A.S., M.Z.H., T.M.S. and K.E.L. did all the in vivo and in vitro experiments; S.Y.O., H.-G.M. and Z.Z. contributed to the analysis of OVA-injected mice in vivo; H.D. did electrophoretic mobility-shift assays; and B.W. and M.L.W. provided reagents and advice.

Corresponding author

Correspondence to Jyoti Misra Sen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 1158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Sharma, A., Oh, S. et al. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-γ. Nat Immunol 10, 992–999 (2009). https://doi.org/10.1038/ni.1762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing